• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于谱聚类的救援提升车故障诊断方法
  • Title

    A fault diagnosis method of rescue lifting vehicle based on spectral clustering

  • 作者

    李立晶常大帅李磊柴君飞

  • Author

    LI Lijing;CHANG Dashuai;LI Lei;CHAI Junfei

  • 单位

    徐州重型机械有限公司

  • Organization
    Xuzhou Heavy Machinery Co., Ltd.
  • 摘要
    针对救援提升车结构复杂、工况故障数据独立性差、故障诊断难的特点,提出一种基于谱聚类的半监督支持向量机救援提升车故障诊断算法。该算法利用谱聚类的思想挖掘原始故障数据的隐藏特征信息,有效区分不同耦合程度的部件系统中故障信息的独立结构特征。首先根据原始输入数据建立故障图谱,然后通过建立拉普拉斯矩阵获取更加符合聚类假设的核函数,最后,建立半监督支持向量机模型,利用梯度下降算法求解最终分类结果。将上述算法应用于XCA30_JY救援提升车工况故障诊断系统,通过搭建真实仿真环境,对采集到的工况数据进行分类,获取最终分类效果。为评价其性能,分别与传统支持向量机及梯度下降半监督支持向量机进行比较。实验结果表明:提出的算法对于救援提升车故障诊断具有较好的分类效果,救援提升车工况故障分类错误率降低至10.2%,可有效解决复杂工况故障诊断难题。由于本算法具备任意样本空间聚类及非凸函数优化求解能力,因此,除可广泛应用于车载故障诊断系统外,对于数据分类、模式识别等方面具有普遍的应用和指导意义。
  • Abstract

    In allusion to the characteristics of complex structure of rescue lifting vehicle, the poor independence of working condition and fault data, and the difficulty in fault diagnosis, we proposed a fault diagnosis algorithm of rescue lifting vehicle with the semi-supervised support vector machine in this paper. In the algorithm, the information on hidden features of the original fault data was mined with the idea of spectral clustering, to effectively distinguish the independent structural features of the fault information in the component system with different degrees of coupling. Firstly, a fault map was established based on the original input data. Then, a kernel function more consistent with the clustering hypothesis was obtained by establishing the Laplace matrix. Finally, the semi-supervised support vector machine model was built and solved by the gradient descent algorithm to obtain the final classification result. Besides, we applied the above algorithm to the working condition fault diagnosis system of XCA30_JY rescue lifting vehicle, to classify the collected working condition data by building a real simulation environment. In order to evaluate its performance, comparison was made with the traditional support vector machine and the gradient descent semi-supervised support vector machine. The experimental results show that the proposed method can reduce the error rate of fault classification for resure cifiting vehicles to 10.2%, which can effectively solve the problems of fault diagnosis in complex working conditions. Conclusively, this algorithm could be widely used in vehicle fault diagnosis system and has a universal application and guiding significance in data classification and pattern recognition, due to its extraordinary capability of arbitrary sample spatial clustering and optimization solution of non-convex function.

  • 关键词

    谱聚类聚类核函数半监督支持向量机救援提升车故障诊断

  • KeyWords

    spectral clustering;cluster kernel function;semi-supervised support vector machine;rescue lifting vehicle;fault diagnosis

  • 基金项目(Foundation)
    国家重点研发计划课题(2018YFC0808204);
  • DOI
  • 引用格式
    李立晶,常大帅,李磊,柴君飞.基于谱聚类的救援提升车故障诊断方法[J].煤田地质与勘探,2023,51(03):186-194.
  • Citation
    LI Lijing,CHANG Dashuai,LI Lei,et al. A fault diagnosis method of rescue lifting vehicle based on spectral clustering[J]. Coal Geology & Exploration,2023,51(3):186−194
  • 图表
    •  
    •  
    • 谱聚类无向加权

    图(7) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联