• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于U-Net的放煤状态控制关键技术研究
  • Title

    Calculation method of gangue content of coal gangue mixed image in fully-mechanized caving based on U-Net

  • 作者

    贺海涛王佳豪张海峰荣耀崔耀

  • Author

    HE Haitao;WANG Jiahao;ZHANG Haifeng;RONG Yao;CUI Yao

  • 单位

    国能神东煤炭集团有限责任公司北京天玛智控科技股份有限公司

  • Organization
    Shendong Coal Group Co., Ltd., China Energy Investment Group
    Beijing Tianma Intelligent Control Technology Co., Ltd.
  • 摘要
    针对于放顶煤开采过程中,人工放煤劳动强度大、效率低、安全风险较高等问题,提出了基于U-Net的放煤状态控制方法,该方法以图像分割技术为基础,通过对放顶煤下落至刮板输送机的状态进行研究,为放顶煤开采智能控制功能的实现提供了准确的放煤状态控制信号。首先,通过混合高斯模型完成对后部刮板输送机上煤流视频中运动状态下的煤流区域进行前景分割,并对前景分割后的煤流图像上的矸石区域进行语义分割;然后,比较前景分割部分与语义分割部分图像像素面积获取煤流视频流中二维图像上的矸石占比的数据;最后,通过工人经验为依据将含矸图像进行二分类,并由含矸图像对应的矸石占比数据计算出见矸关门的阈值。该方法简单可靠,鲁棒性较强,以神东保德煤矿81 309工作面的试验采样数据为例,验证了该方法的有效性。对现场300张综放煤矸混合图像为数据集进行模型训练,以50张图像为测试集进行矸石目标区域分割测试,其精确度为96.04%,由工人经验将300张含矸图像进行2分类并由此计算“见矸关门”阈值,为放顶煤开采智能控制功能的实现提供了可靠的关门控制信号。试验结果表明,以该方法为基础实现的放顶煤开采智能控制功能能够取代工人手动放煤,因此该方法的应用将提高了放顶煤开采效率,保证矿井安全生产,为无人化放顶煤开采提供了具体路径。
  • Abstract

    Aimed at the problems of high labor intensity, low efficiency and high safety risk of manual coal caving in the process of top coal caving mining, this paper proposes a method of coal caving state control based on U-Net. This method is based on image segmentation technology, and provides accurate coal caving state control signal for the realization of intelligent control function of top coal caving mining by studying the state of coal caving falling to scraper conveyor. Firstly, the foreground segmentation of the coal flow area in the moving state in the video of coal flow on the rear scraper conveyor is completed through the mixed Gaussian model, and the gangue area in the foreground segmented coal flow image is semantically segmented; Then, compare the pixel area of the foreground segmentation part and the semantic segmentation part to obtain the percentage of gangue on the two-dimensional image in the coal flow video stream; Finally, based on the workers’ experience, the images containing gangue are classified into two categories, and the threshold value of closing the door is calculated from the proportion of gangue corresponding to the images containing gangue. This method is simple, reliable and robust. Taking the 81309 working face of Shendong Baode Coal Mine as an example, the effectiveness of this method is verified. The model training is carried out with 300 fully-mechanized coal gangue mixed images as the data set, and the gangue target area segmentation test is carried out with 50 images as the test set. The accuracy is 96.04%; According to the workers’ experience, 300 images containing waste are classified into two categories and the threshold value of “closing the door after seeing the waste” is calculated, which provides a reliable door closing control signal for the realization of the intelligent control function of the top coal caving mining. The experimental results show that the intelligent control function of top coal caving mining based on this method can replace the manual coal caving of workers. Therefore, the application of this method improves the efficiency of top coal caving mining, ensures the safety of mine production, and contributes to high-quality unmanned top coal caving mining.

  • 关键词

    语义分割前景分割混矸率透明煤流U-Net

  • KeyWords

    semantic segmentation;foreground segmentation;gangue mixing rate;transparent coal flow;U-Net

  • 基金项目(Foundation)
    神东保德“综采放顶煤智能化控制技术研究”资助项目(00000050048);
  • DOI
  • 引用格式
    贺海涛,王佳豪,张海峰,荣耀,崔耀.基于U-Net的放煤状态控制关键技术研究[J].煤炭科学技术,2022,50(S2):237-243.DOI:10.13199/j.cnki.cst.2022-1876.
  • Citation
    HE Haitao,WANG Jiahao,ZHANG Haifeng,et al. Calculation method of gangue content of coal gangue mixed image in fully-mechanized caving based on U-Net[J]. Coal Science and Technology,2022,50(S2):237−243
  • 图表
    •  
    •  
    • 顶煤放出状态控制方法流程

    图(9) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联