• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于PSO-GBDT综采工作面初次来压预测研究
  • Title

    Research on prediction of the fisrt pressure of fully-mechanized face based on PSO-GBDT

  • 作者

    吴早阳李丹宁西成峰崔耀

  • Author

    WU Zaoyang;LI Danning;XI Chengfeng;CUI Yao

  • 单位

    北京天玛智控科技股份有限公司

  • Organization
    Beijing Tianma Intellgent Control Technology Co. , Ltd.
  • 摘要
    综采工作面来压状况作为制定采掘工程支护设计的重要参考因素,准确地预测综采面来压趋势,不仅能辅助设计人员制定合理的井下支护方案,对于煤矿安全高效生产也有着极大的帮助。构建了一种基于PSO-GBDT综采工作面初次来压预测模型,通过选取大同矿区近浅埋煤层与综采工作面来压有着显著影响的8个完整性好的因素作为特征,以初次来压步距和强度作为输出,结合粒子群优化算法,通过GBDT构建近浅埋煤层初次来压预测模型。首先对数据集进行可视化数据分析,随后以GBDT集成学习方法构建初次来压预测模型,然后通过粒子群优化算法对训练好的GBDT进行超参数优化,最后以各个特征对所构建的预测模型的影响权重进行排序,为来压机理分析提供参考指标,并与GBDT或Adaboost人工调参建模方法进行对比。试验结果表明,PSO-GBDT在预测近浅埋煤层初次来压步距和强度时,RMSE和R2性能评估指标均取得了更好的结果,相较于GBDT人工调参建模方法,PSO-GBDT在构建以初次来压步距和强度为输出的模型中,R2指标分别提高了7.2%和6.8%, RMSE指标分别降低了39%和42%。除此之外,PSO-GBDT与Adaboost人工调参建模方法对比试验结果表明,PSO-GBDT建模方法的预测性能优势显著,该方法以高性能和多因素的特点计算综采面初次来压步距和强度,为准确地预测综采面初次来压趋势提供一种新的解决方案。
  • Abstract

    The pressure condition of fully mechanized mining face is an important reference factor for formulating the support design of mining engineering. The accurate prediction of the pressure trend of fully mechanized mining face can not only assist designers to make reasonable underground support scheme, but also be of great help to the safe and efficient production of coal mine. In this paper, a model based on PSO-GBDT is integrated to predict the first pressure of near shallow coal seam. Eight integrity-good factors which have significant influence on the pressure of fully mechanized mining face in near shallow coal seam of Datong mining area are selected as features. The first pressure step distance and strength are taken as output, combined with particle swarm optimization algorithm. GBDT is used to construct the prediction model of the first pressure in near shallow coal seam. Visual data analysis was carried out on the data set first, and then to GBDT integrated learning method to build the first pressure prediction model, and then by particle swarm optimization algorithm for trained GBDT super parameter optimization, and finally to the various characteristics to build the prediction model of influence weight sorting and provide the reference for pressure mechanism analysis, And compared with GBDT or Adaboost manually modeling method. The experimental results show that PSO-GBDT has achieved better results in predicting the first pressure step distance and strength of near shallow coal seam, the performance evaluation indexes of begin{document}$ mathrm{R}mathrm{M}mathrm{S}mathrm{E} $end{document} and begin{document}$ {{R}}^{2} $end{document} have achieved better results, compared with the GBDT manually modeling method, the begin{document}$ {{R}}^{2} $end{document} indexes of PSO-GBDT are improved by 7.2% and 6.8% respectively, and the begin{document}$ mathrm{R}mathrm{M}mathrm{S}mathrm{E} $end{document} indexes are reduced by 39% and 42% respectively, in the model constructed with the first pressure step distance and strength as the output. In addition, the comparative experimental results of PSO-GBDT and Adaboost manually modeling methods show that the PSO-GBDT has significant advantages in prediction performance. The method calculates the first pressure distance and strength of fully mechanized mining face with the characteristics of high performance and multi-factors, which provides a new solution for accurately predicting the first pressure trend of fully mechanized mining face.

  • 关键词

    初次来压粒子群优化算法梯度提升树近浅埋煤层

  • KeyWords

    pressure analysis;particle swarm optimization algorithm;gradient boosting decision tree;near shallow coal seam

  • 基金项目(Foundation)
    山东省重大科技创新工程资助项目(2020CXGC011501);神东保德“综采放顶煤智能化控制技术研究”资助项目(00000050048);天玛智控重点科技资助项目(2022TMO18-C1);
  • DOI
  • 引用格式
    吴早阳,李丹宁,西成峰,崔耀.基于PSO-GBDT综采工作面初次来压预测研究[J].煤炭科学技术,2022,50(S2):7-15.DOI:10.13199/j.cnki.cst.2022-1781.
  • Citation
    WU Zaoyang,LI Danning,XI Chengfeng,et al. Research on prediction of the fisrt pressure of fully-mechanized face based on PSO-GBDT[J]. Coal Science and Technology,2022,50(S2):7−15
  • 图表
    •  
    •  
    • 数据集数据分布直方图

    图(11) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联