• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
深度学习在煤矿水力压裂微震检测中的应用
  • Title

    Application of deep learning in microseismic detectionof hydraulic fracturing in coal mine

  • 作者

    李昊高林生刘麟邵坤

  • Author

    LI Hao;GAO Linsheng;LIU Lin;SHAO Kun

  • 单位

    西安科技大学能源学院华北科技学院矿山安全学院华北科技学院安全工程学院

  • Organization
    College of Energy Science and Engineering, Xi’an University of Science and Technology
    School of Mine Safety, North China Institute of Science and Technology
    School of Safety Engineering, North China Institute of Science and Technology
  • 摘要
    水力压裂在煤矿中被广泛应用,通常用微震检测压裂效果。为了准确识别微震的微弱波形,为后续定位、反演等波形处理奠定基础,采用深度学习卷积神经网络与图像相结合的方法,对比分析时域卷积神经网络模型、小波卷积神经网络模型、赤池信息量准则、长短时窗法4种方法识别煤层钻孔水力压裂的微弱微震数据的效果。结果表明:时域和小波卷积神经网络模型训练和测试准确率均达到99%以上,损失函数均在0.02以下;在对一个小时连续微震数据的检测中,时域模型、小波模型微震事件识别精确率分别达到100%,84%,召回率分别达到68%,57%,优于赤池信息量准则、长短时窗法的微震事件识别精确率66%,40%,召回率42%,25%;对比煤矿水力压裂微弱真实事件识别结果,时域和小波卷积神经网络模型优于赤池信息量准则和长短时窗法方法,时域模型优于小波模型。上述结果证明深度学习的卷积神经网络模型有较强微弱波形识别能力和泛化能力,是一种更优的煤矿水力压裂微震检测方法。
  • Abstract

    Hydraulic fracturing is widely used in coal mines, and microseismic is usually used to detectthe fracturing effect. In order to accurately identify weak microseismic waveform and lay a foundationfor subsequent positioning, inversion and other waveform processing, the method of combining deeplearning CNN( convolutional neural network) with image is adopted to analyze the effect of the time do-main CNN model, the wavelet CNN model, AIC and STA/ LTA in identifying weak microseismic data of hydraulic fracturing in coal seam drilling. The results show that the training and testing accuracy of thetime-domain and wavelet convolution neural network models are above 99% , and the loss function isbelow 0. 02. In the detection of one hour continuous microseismic data, the identification accuracy oftime domain model and wavelet model for microseismic events reaches 100% and 84% respectively.The recall rate reaches 68% and 57% respectively, which is higher than AIC and STA/ LTA in identif-ying microseismic events with accuracy of 66% and 40% , and the recall rate is 42% and 25% . In therecognition of weak real events in coal mines, time domain CNN and wavelet CNN model are superior toAIC and STA/ LTA methods, and time domain models to wavelet models. The results indicate that thedeep learning CNN model has a stronger weak waveform recognition ability and generalization abilitythan AIC and STA/ LTA, a better microseismic detection method.

  • 关键词

    煤矿水力压裂微震事件深度学习

  • KeyWords

    coal mine; hydraulic fracturing; microseismic events; deep learning

  • 基金项目(Foundation)
    国家自然科学基金项目(52174111,51874133);中央高校基本科研业务费项目(3142017009);
  • 文章目录

    0 引 言
    1 微震波形CNN模型
    1.1 CNN模型工作原理
    1.2 数据预处理
    1.3 2种深度学习模型搭建
    2 波形识别结果
    2.1 事件准确率和召回率
    2.2 水力压裂微震事件识别实例
    3 结 论
  • DOI
  • 引用格式
    [1]李昊,高林生,刘麟,等.深度学习在煤矿水力压裂微震检测中的应用[J].西安科技大学学报,2023,43(04):686-696.
  • Citation
    LI Hao,GAO Linsheng,LIU Lin,et al.Application of deep learning in microseismic detection of hydraulic fracturing in coal mine[ J].Journal of Xi’an University of Science and Technology,2023,43( 4):686-696.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联