-
Title
Coal gangue detection technology based on improved YOLO v4
-
作者
崔斌陈林亓玉浩张坤赵得福黄梁松李明霞孔祥俊杜明超蒋祥卿刘源
-
Author
CUI Bin;CHEN Lin;QI Yuhao;ZHANG Kun;ZHAO Defu;HUANG LiangsongLI Mingxia;KONG Xiangjun;DU Mingchao;JIANG Xiangqing;LIU Yuan
-
单位
山东科技大学山东省机器人与智能技术重点实验室欧普瑞泰环境科技有限公司青岛华夏橡胶工业有限公司北斗天地股份有限公司青海能源发展(集团)有限公司
-
Organization
Shandong Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology
Opritel Environmental Technology Co. , Ltd.
Qingdao Huaxia Rubber Industry Co. , Ltd.
Beidou Tiandi Co. , Ltd.
Qinghai Energy Development (Group) Co. , Ltd.
-
摘要
为提高煤矸石分拣的精度和可靠性,提出了一种基于改进YOLOv4的煤矸石识别网络,引入了Focal损失函数,使用K-means++聚类算法优化初始锚定框,将PANet中的五次卷积操作替换为CSP结构,同时引入空洞卷积的金字塔结构,降低模型参数,实现模型的轻量化,增加了一条跨连接边构成BiFPN结构,提高对中等目标的检测能力,得到My-YOLOv4目标检测模型。本研究对所提出的My-YOLOv4识别检测方法与SSD、YOLOv3、YOLOv4三种检测方法进行实验对比分析。实验结果表明,该检测算法在测试集上检测煤与煤矸石混合的mAP值为98.14%,FPS为28.3f/s,相较于SSD、YOLOv3检测算法识别精度分别提高了5.41%、2.87%,相较于YOLOv4目标检测模型识别速度提高了7.7f/s,通过对比分析实验数据验证了My-YOLOv4目标检测模型整体性能的有效提高。
-
Abstract
In order to enhance the accuracy and reliability of coal gangue recognition, a coal gangue recognition network based on improved YOLO v4 is proposed, the initial anchoring frame is optimized using K-means++ clustering algorithm, the five convolution operations in PANet are replaced with CSP structure, and the pyramid structure of hole convolution is introduced at the same time to reduce the model parameters and realize the model light weight, adding a cross-connected edge to form a BiFPN structure to improve the detection capability of medium targets, and obtaining the My-YOLO v4 target detection model. The proposed My-YOLO v4 recognition detection method is compared and analyzed with three detection methods, SSD, YOLO v3 and YOLO v4, by collecting mixed samples of coal and gangue in the field and using relevant experimental equipment. The experimental results show that detection algorithm detects coal mixed with gangue on the test set with mAP value of 98. 14% and FPS of 28. 3 frames/ second, which improves the recognition accuracy by 5. 41% and 2. 87% compared with SSD and YOLO v3 detection algorithms, respectively, and improves the recognition speed by 7. 7 frames/ second compared with YOLO v4 target detection model, by comparing The analysis of experimental data verifies the effective improvement of the overall performance of My-YOLO v4 target detection model.
-
关键词
煤矸识别深度学习目标检测带式输送系统My-YOLOv4
-
KeyWords
coal gangue recognition; deep learning; target detection; belt conveyor system; My-YOLO v4
-
基金项目(Foundation)
山东省重大科技创新工程项目(2019SDZY04)
-
DOI
-
引用格式
崔 斌, 陈 林, 亓玉浩, 等. 基于改进 YOLO v4 的煤矸石识别检测技术研究 [J]. 煤炭工程, 2023, 55(12): 161-166.