Chang WeiZhien LiuChufu LiSurinder SinghHaoren LuYudong GongPingping LiHanlin WangXia YangMing XuShujun Mu
National Institute of Clean-and-Low-Carbon EnergyNICE America ResearchNexant
Here, we provide a status update of an integrated gasification fuel cell (IGFC) power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal (MWth) scale. This system is designed to use coal as fuel to produce syngas as a first step, similar to that employed for the integrated gasification combined cycle. Subsequently, the solid-oxide fuel-cell (SOFC) system is used to convert chemical energy to electricity directly through an electrochemical reaction without combustion. This system leads to higher efficiency as compared with that from a traditional coal-fired power plant. The unreacted fuel in the SOFC system is transported to an oxygen-combustor to be converted to steam and carbon dioxide (CO2). Through a heat-recovery system, the steam is condensed and removed, and CO2 is enriched and captured for sequestration or utilization. Comprehensive economic analyses for a typical IGFC system was performed and the results were compared with those for a supercritical pulverized coal-fired power plant. The SOFC stacks selected for IGFC development were tested and qualified under hydrogen and simulated coal syngas fuel. Experimental results using SOFC stacks and thermodynamic analyses indicated that the control of hydrogen/CO ratio of syngas and steam/CO ratio is important to avoid carbon deposition with the fuel pipe. A 20-kW SOFC unit is under development with design power output of 20 kW and DC efficiency of 50.41%. A 100 kW-level subsystem will consist of 6 × 20-kW power-generation units, and the MWth IGFC system will consist of 5 × 100 kW-level subsystems.
Integrated gasification fuel cell (IGFC)Solid oxide fuel cellStack moduleCarbon dioxide captureOxygen-combustor
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会