• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
融合知识图谱的预训练模型研究综述
  • Title

    Survey on Pre-trained Models Fusing Knowledge Graphs

  • 作者

    杨杰刘纳徐贞顺郑国风李晨道路

  • Author

    YANG Jie;LIU Na;XU Zhenshun;ZHENG Guofeng;LI Chen;DAO Lu

  • 单位

    北方民族大学 计算机科学与工程学院北方民族大学 图像图形智能处理国家民委重点实验室

  • Organization
    College of Computer Science and Engineering, North Minzu University
    The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University
  • 摘要

    【目的】针对预训练模型仍面临处理复杂任务所需的知识信息质量不高和数量庞杂的挑战,而融合知识图谱的预训练模型可增强其性能。进一步研究并深入探讨如何有效地融合知识图谱到预训练模型中,以丰富目前综述所包含的知识增强类型。【方法】分析并总结了近年来融合知识图谱的预训练模型的相关文献,首先简要介绍了预训练模型引入知识图谱的原因、优势以及难点;其次详细讨论了隐性结合、显性结合两类方法,并对代表模型的特点与优缺点进行了对比总结;最后对融合知识图谱的预训练模型将面临的挑战以及未来研究发展趋势进行了讨论。【结论】融合知识图谱的预训练模型核心问题是解决如何将知识库中的信息有效地融合到预训练模型中,未来可以探索更加有效和高效的知识融合方法,以提高模型的性能和泛化能力。

  • Abstract

    【Purpose】 In practical applications, the pre-trained model still faces the challenge of low quality and quantity of knowledge information required for complex tasks, while the fusion of knowledge graph into the pre-trained model can enhance its performance. 【Methods】 In this pa-per, literatures about knowledge graph fusion pre-training model in recent years have been ana-lyzed and summarized. First, the reasons, advantages, and difficulties of introducing knowledge graph into pre-training model have been introduced briefly. Second, two kinds of methods of im-plicit combination and explicit combination are discussed in detail, and the characteristics, advan-tages, and disadvantages of representative models are compared and summarized. Finally, the challenges and future research trends of pre-training models with fusion knowledge graph are dis-cussed. 【Conclusions】 The core issue of pre-training models incorporating knowledge graphs is to solve how to effectively integrate information from knowledge bases into the training model. In the future, more effective and efficient knowledge fusion methods can be explored to improve model performance and generalization ability.

  • 关键词

    深度学习预训练模型知识图谱增强

  • KeyWords

    deep learning; pre-training model; knowledge graph; enhance

  • 基金项目(Foundation)
    宁夏自然科学基金资助项目(2021AAC03224,2021AAC03217);国家自然科学基金资助项目(62162001)
  • DOI
  • 引用格式
    杨杰,刘纳,徐贞顺,等.融合知识图谱的预训练模型研究综述[J].太原理工大学学报,2024,55(1):142-154.
  • Citation
    YANG Jie,LIU Na,XU Zhenshun,et al.Survey on pre-trained models fusing knowledge graphs[J].Journal of Taiyuan University of Technology,2024,55(1):142-154.
  • 相关专题
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联