• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤中异物识别的深度学习模型轻量化策略
  • Title

    Lightweight deep learning model compression strategy for coal foreign object recognition

  • 作者

    李江涛张康辉沙特

  • Author

    LI Jiangtao;ZHANG Kanghui;SHA Te

  • 单位

    国能神东煤炭集团有限责任公司中国矿业大学(北京)人工智能学院中国矿业大学(北京)化学与环境工程学院

  • Organization
    CHN Energy Shendong Coal Group Co. , Ltd.
    School of Artificial Intelligence, China University of Mining and Technology-Beijing
    School of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing
  • 摘要

    针对使用深度卷积神经网络识别煤中异物的推理速度受其高计算成本的阻碍的问题,提出了一种基于深度学习的煤中异物识别模型轻量化策略,减小了模型大小和运行时的占用内存,并能在不影响准确性的情况下降低计算操作数量。该方法将L1正则化强加给批量归一化(BN)层中的比例因子,使得能够自动识别不重要的通道或神经元。不重要的通道会被自动识别并在之后进行修剪,从而产生具有相当精度的精简模型。该轻量化策略可提高煤矿工业生产效率和安全性,并为其他领域的深度学习模型提供参考。

  • Abstract

    In response to the problem that the inference speed of using deep convolutional neural networks to identify impurities in coal is hindered by their high computational cost, we present a lightweight strategy for coal impurity identification based on deep learning, aiming to simultaneously reduce model size, decrease memory usage during runtime, and reduce the number of computational operations without compromising accuracy. This approach enforces L1 regularization on the scale factors within Batch Normalization (BN) layers, allowing automatic identification of unimportant channels or neurons. Unimportant channels are automatically identified and pruned, resulting in a compact model with comparable accuracy, significantly reducing model size and computational overhead. This means that our approach can enhance the efficiency and safety of the coal mining industry. Furthermore, the lightweight strategy holds reference value for deep learning models in other domains.

  • 关键词

    异物检测机器视觉深度学习模型轻量化

  • KeyWords

    impurity detection; machine vision; deep learning; model lightweighting

  • DOI
  • 引用格式
    李江涛, 张康辉, 沙 特. 煤中异物识别的深度学习模型轻量化策略 [J]. 煤炭工程, 2023, 55(S1): 220-224.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联