• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进人工势场算法的煤矿井下机器人路径规划
  • Title

    Path planning of coal mine underground robot based on improved artificial potential field algorithm

  • 作者

    薛光辉王梓杰王一凡李亚男刘文海

  • Author

    XUE Guanghui;WANG Zijie;WANG Yifan;LI Yanan;LIU Wenhai

  • 单位

    中国矿业大学(北京)机械与电气工程学院煤矿智能化与机器人创新应用应急管理部重点实验室

  • Organization
    School of Mechanical and Electrical Engineering, China University of Mining and Technology-Beijing
    Key Laboratory of Intelligent Mining and Robotics, Ministry of Emergency Management, China University of Mining and Technology-Beijing
  • 摘要
    路径规划是煤矿机器人在煤矿井下狭小巷道空间中应用亟待解决的关键技术之一。针对传统人工势场(APF)算法在狭小巷道环境中规划出的路径可能离巷道边界过近,以及在障碍物附近易出现目标不可达和路径振荡等问题,提出了一种基于改进APF算法的煤矿机器人路径规划方法。参考《煤矿安全规程》有关规定建立了巷道两帮边界势场,将机器人行驶路径尽量规划在巷道中间,以提高机器人行驶安全性;在障碍物斥力势场中引入调节因子,以解决目标不可达问题;引入转角限制系数以平滑规划出的路径,减少振荡,提高规划效率,保证规划路径的安全性。仿真结果表明:当目标点离障碍物很近时,改进APF算法可成功规划出能够抵达目标点的路径;改进APF算法规划周期数较传统算法平均减少了14.48%,转向角度变化累计值平均减少了87.41%,曲率绝对值之和平均减少了78.09%,表明改进APF算法规划的路径更加平滑,路径长度更短,规划效率和安全性更高。
  • Abstract
    Path planning is one of the key technologies that urgently need to be solved in the application of coal mine robots in narrow underground roadways. A path planning method for coal mine robots based on improved APF algorithm is proposed to address the issues of traditional artificial potential field (APF) algorithms that planning paths in narrow roadway environments may be too close to the roadway boundary, as well as the possibility of unreachable targets and path oscillations near obstacles. Referring to the relevant provisions of the Coal Mine Safety Regulations, the boundary potential field between the two sides of the roadway is established. The robot's path is planned as much as possible in the middle of the roadway to improve the safety of robot travel. The method introduces regulatory factors into the repulsive potential field of obstacles to solve the problem of unreachable targets. The method introduces corner constraint coefficients to smooth the planned path, reduce oscillations, improve planning efficiency, and ensure the safety of the planned path. The simulation results show that when the target point is very close to the obstacle, the improved APF algorithm can successfully plan a path that can reach the target point. The improved APF algorithm reduces the planning cycle by an average of 14.48% compared to traditional algorithms. The cumulative value of steering angle reduces by an average of 87.41%, and the sum of absolute curvature values is reduced by an average of 78.09%. The results indicate that the improved APF algorithm plans smoother paths, shorter path lengths, and has higher planning efficiency and safety.
  • 关键词

    煤矿机器人路径规划人工势场法目标不可达路径振荡斥力势场修正转角限制系数

  • KeyWords

    coal mine robots;path planning;artificial potential field method;target unreachable;path oscillation;correction of repulsive potential field;corner restriction coefficient

  • 基金项目(Foundation)
    国家自然科学基金项目面上项目(51874308);国家重点基础研究发展计划(973计划)项目(2014CB046306)。
  • DOI
  • 引用格式
    薛光辉,王梓杰,王一凡,等. 基于改进人工势场算法的煤矿井下机器人路径规划[J]. 工矿自动化,2024,50(5):6-13.
  • Citation
    XUE Guanghui, WANG Zijie, WANG Yifan, et al. Path planning of coal mine underground robot based on improved artificial potential field algorithm[J]. Journal of Mine Automation,2024,50(5):6-13.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • APF算法原理

    图(11) / 表(2)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联