• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进YOLOv5s的煤矿机电设备维修指导系统
  • Title

    A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s

  • 作者

    徐俊赵小虎候念琦王杰刘昱麟

  • Author

    XU Jun;ZHAO Xiaohu;HOU Nianqi;WANG Jie;LIU Yulin

  • 单位

    徐州工程学院信息化中心中国矿业大学矿山互联网应用技术国家地方联合工程实验室信息与控制工程学院

  • Organization
    Information Center, Xuzhou University of Technology
    The National and Local Joint Engineering Laboratory of Internet Application Technology on Mine, China University of Mining and Technology
    School of Information and Control Engineering, China University of Mining and Technology
  • 摘要
    针对煤矿机电设备辅助维修中二维码标注工作量大、通用性低及现有免注册识别方法实现复杂、难以部署等问题,提出了一种基于改进YOLOv5s的煤矿机电设备维修指导系统。该系统由设备免注册识别模块、故障维修指导模块、远程专家接入指导模块组成。设备免注册识别模块通过HoloLens眼镜上的摄像头采集故障设备图像,并通过改进YOLOv5s图像识别算法进行分析和处理,识别出故障设备型号;故障维修指导模块根据故障设备型号自动匹配调用预设好的混合现实拆装模型,形成维修指导解决方案;远程专家接入指导模块通过音视频会话、虚拟标注等方式实现远程专家与现场维修人员的交互。为保证用户使用混合现实设备时的沉浸感体验,针对混合现实设备自身算力不足问题,采用ShuffleNetV2替换YOLOv5s中的Backbone,得到YOLOv5s−SN2网络,从而减少模型参数量,降低计算开销。实验结果表明:YOLOv5s−SN2相较于YOLOv5s精度略有下降,但每秒浮点运算次数(FLOPS)从16.5×109下降到7.6×109,参数量从15.6×106个下降到8.2×106个;在YOLO系列模型中,YOLOv5s−SN2性能最优。以三叶罗茨鼓风机为例验证系统整体效果,结果表明,YOLOv5s−SN2可快速识别出电动机型号,调用与之匹配的虚拟模型及维修流程,远程专家可通过音视频接入和标注等方法辅助现场工作人员进行机电设备维修。
  • Abstract
    In order to solve the problems of large workload and low versatility of QR code labelling and complex implementation and difficult deployment of existing no-registration recognition methods in the auxiliary maintenance of coal mine electromechanical equipments, a coal mine electromechanical equipments maintenance guidance system based on improved YOLOv5s is proposed. The system consists of a equipment no-registration recognition module, a fault maintenance guidance module, and a remote expert access guidance module. The equipment no-registration recognition module collects images of faulty equipments through the camera on HoloLens glasses, and analyzes and processes them through an improved YOLOv5s image recognition algorithm to recognize the faulty equipment model. The fault maintenance guidance module automatically matches and calls the preset mixed reality disassembly and assembly model based on the model of the faulty equipment, forming a maintenance guidance solution. The remote expert access guidance module achieves interaction between remote experts and on-site maintenance personnel through audio and video sessions, virtual annotation, and other methods. In order to ensure an immersive experience for users when using mixed reality equipment, ShuffleNetV2 is used to replace the Backbone in YOLOv5s to obtain the YOLOv5s-SN2 network, which reduces the number of model parameters and computational overhead. The experimental results show that YOLOv5s-SN2 has a slight decrease in precision compared to YOLOv5s, but the number of floating-point operations per second (FLOPS) has decreased from 16.5×109 to 7.6×109, and the number of parameters has decreased from 15.6×106 to 8.2×106. Among the YOLO series models, YOLOv5s-SN2 has the best performance. Taking the three leaf Roots blower as an example to verify the overall effectiveness of the system, the results show that YOLOv5s-SN2 can quickly recognize the motor model, call the matching virtual model and maintenance process. The remote experts can assist on-site personnel in electromechanical equipment maintenance through methods such as audio and video access and annotation.
  • 关键词

    煤矿机电设备辅助维修免注册识别YOLOv5s混合现实HoloLens

  • KeyWords

    coal mine electromechanical equipment;auxiliary maintenance;no-registration recognition;YOLOv5s;mixed reality;HoloLens

  • 基金项目(Foundation)
    山东省自然科学基金项目(ZR2021MF026)。
  • DOI
  • 引用格式
    徐俊,赵小虎,候念琦,等. 基于改进YOLOv5s的煤矿机电设备维修指导系统[J]. 工矿自动化,2024,50(5):151-156.
  • Citation
    XU Jun, ZHAO Xiaohu, HOU Nianqi, et al. A maintenance guidance system for coal mine electromechanical equipment based on improved YOLOv5s[J]. Journal of Mine Automation,2024,50(5):151-156.
  • 图表
    •  
    •  
    • 基于改进YOLOv5s的煤矿机电设备维修指导系统总体框架

    图(4) / 表(2)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联