DEM-ML investigation of bauxite pillar strength prediction method
朱德福王德玉于彪彪
ZHU Defu;WANG Deyu;YU Biaobiao
太原理工大学 原位改性采矿教育部重点实验室西安交通大学 航天航空学院广铝集团有限公司
矿柱极限承载能力与矿柱尺寸参数密切相关,科学地预测矿柱强度是空场法安全高效开采铝土矿的关键。为了准确高效地预测矿柱强度,融合运用离散元方法(DEM)的模型参数化、样本数据强扩展性与机器学习(ML)方法的数据驱动优势,选取矿柱尺寸参数(长、宽、高)作为影响因子,开发了Grasshopper参数化建模电池组,实现了等块体密度的矿柱黏合块体模型(BBM)的参数化构建,结合矿体节理分布特征实测结果,利用3DEC程序构建了300组黏合块体−离散裂隙网络(BBM-DFN)矿柱离散元数值模型,开展了矿柱承载特性试验,监测并建立了机器学习数据集,且验证了此数据集的可靠性;分别以支持向量机(SVM)、BP神经网络、随机森林(RF)、高斯过程回归(GPR) 4种算法构建了矿柱强度预测模型,根据回归类模型评价指标(判定系数
The ultimate loading capacity of the pillar is closely related to the bauxite pillar size parameters, and scientific prediction of pillar strength is the key to safe and efficient mining by the airfield method. In order to accurately and efficiently predict the pillar strength, combining the model parameterisation and high scalability of sample data using Discrete Element Methods (DEM) with the data-driven benefits of Machine Learning (ML) methods, selection of pillar size parameters (length, width and height) as influencing factors, grasshopper parametric modelling battery pack developed, parametric construction of a Bond Block Model (BBM) for pillars with equal block densities achieved, combined with the measured results of the distribution characteristics of the pillar joints, used the 3DEC program to construct 300-group Bond Block Model-Discrete Fracture Network (BBM-DFN) discrete element numerical model of the pillars, carried out tests on the loading characteristics of the pillar, monitor and build a machine learning dataset and verify its reliability; Four algorithms, namely Support Vector Machine (SVM), BP neural network, Random Forest (RF) and Gaussian Process Regression (GPR), were used to construct the pillar strength prediction model. The selection of the best model was carried out based on the regression class model evaluation indicators (
铝土矿矿柱强度离散元方法机器学习矿柱(群)稳定性
bauxite;pillar strength;3DEC;machine learning;stability of pillar (group)
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会