Study and application of six-component high-entropy two-dimensionalmaterials in photothermal methanol reforming for hydrogen production
黄森焱刘鑫雷如楠杜凯于晨阳李亚光
HUANG Senyan;LIU Xin;LEI Runan;DU Kai;YU Chenyang;LI Yaguang
河北大学光驱动碳中和研究中心
为了提高光热甲醇重整制氢反应中铜基催化剂的稳定性与效率,提出了一种基于高熵策略的催化剂设计方法。通过聚乙烯吡咯烷酮(PVP)辅助冻干法,成功制备了六元高熵二维Cu₂Zn₁Al₀.₅Ce₅Zr₀.₅In₀.₅Ox催化剂。该催化剂通过多种表征手段(包括X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及氮气吸附脱附分析等)验证了其晶体结构的单一性以及表面纳米片状特征,同时显示出优异的抗烧结和抗氧化性能。在热催化反应中,当反应温度达到450°C时,氢气生成速率达到1887.94mmol/(g·h)。在新型光热转换装置的配合下,该催化剂在2kW/m²强度的太阳光下展现出显著的光热催化活性,其甲醇水蒸气重整产氢速率为1402.12mmol/(g·h),且在72h内保持稳定,表现出卓越的长期稳定性。该催化剂的高性能主要源于其高熵特性带来的热力学稳定性及独特的多孔结构,这些特点显著增加了催化活性位点的数量,同时增强了对高温环境的适应能力。与传统催化剂相比,六元高熵Cu₂Zn₁Al₀.₅Ce₅Zr₀.₅In₀.₅Ox在光热甲醇重整制氢反应中的催化性能和稳定性均得到了显著提升,克服了室外光热系统因温度波动导致的催化剂烧结问题。不仅为光热催化领域提供了一种新型高效催化剂设计策略,还进一步推动了高熵材料在复杂反应条件下的实际应用。通过将高熵材料与光热催化技术相结合,为实现氢能源的可持续高效生产提供了理论支持与实践依据,展现了该催化剂在工业化制氢中的广阔应用前景。
To enhance the stability and efficiency of copper-based catalysts in photothermal methanol reforming for hydrogen production,this study proposes a catalyst design strategy based on high-entropy principles. A six-component high-entropy two-dimensionalCu₂Zn₁Al₀.₅Ce₅Zr₀.₅In₀.₅Ox catalyst was successfully synthesized using a polyvinylpyrrolidone (PVP)-assisted freeze-drying method.Characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronmicroscopy (TEM), and nitrogen adsorption-desorption analysis, confirmed the single-phase crystal structure and nanosheetmorphology of the catalyst,along with its superior anti-sintering and anti-oxidation properties. In thermal catalytic reactions,the catalystexhibited a hydrogen production rate of 1887.94 mmol/(g·h) at 450 °C. When integrated with a novel photothermal conversiondevice,the catalyst demonstrated remarkable photothermal catalytic activity under a solar intensity of 2 kW/m²,achieving a methanolsteam reforming hydrogen production rate of 1402.12 mmol/(g·h) while maintaining stability over 72 hours,indicating exceptionallong-term durability.Further experiments revealed that the high performance of this catalyst is primarily attributed to the thermodynamicstability and unique porous structure derived from its high-entropy characteristics. These features significantly increased the number of catalytic active sites and enhanced resistance to high-temperature conditions. Compared to traditional catalysts,the six-component high-entropy Cu₂Zn₁Al₀.₅Ce₅Zr₀.₅In₀.₅Ox exhibited significantly improved catalytic performance and stability in photothermal methanolreforming for hydrogen production, addressing the sintering challenges caused by temperature fluctuations in outdoor photothermalsystems. This study not only provides a novel and efficient catalyst design strategy for the photothermal catalysis field but also advances thepractical application of high-entropy materials under complex reaction conditions. By integrating high-entropy materials withphotothermal catalytic technology,this work offers theoretical support and practical solutions for the sustainable and efficient productionof hydrogen energy,showcasing the broad industrial application potential of this catalyst in hydrogen production.
PVP辅助冻干法高熵材料光热催化技术甲醇水蒸气重整制氢催化剂
PVP-assisted freeze-drying method;high-entropy materials;photothermal catalysis technology;methanol steam reforming for hydrogen production;catalyst
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会