• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进变分模式分解的煤矿通风机振动信号特征提取
  • Title

    Feature extraction of coal mine ventilator vibration signals based on improved variational mode decomposition

  • 作者

    陶珑郭燕飞

  • Author

    TAO Long;GUO Yanfei

  • 单位

    太原科技大学 电子信息工程学院先进控制与装备智能化山西省重点实验室

  • Organization
    School of Electronic Information Engineering, Taiyuan University of Science and Technology
    Shanxi Key Laboratory of Advanced Control and Equipment Intelligence
  • 摘要

    煤矿通风机振动信号是一种非平稳多分量信号。传统的非平稳信号特征信号提取方法存在自适应性差、对通风机早期故障的微弱特征辨识能力有限等问题,基于广义变分模式分解的特征提取方法的信号处理速度难以满足通风机振动信号特征快速提取的要求。针对上述问题,提出了一种基于改进变分模式分解的煤矿通风机振动信号特征快速提取方法。在广义变分模式分解算法的基础上,采用乘子交替方向法迭代求解,将约束优化问题转换为无约束优化问题。应用改进变分模式分解算法对信号进行等效分解,得到匹配目标信号特征的等效滤波器,通过内积变换原理快速提取通风机振动信号特征分量。仿真和实验结果表明,改进变分模式分解算法对不同强度的特征分量提取效果均较好,准确性和抗噪性良好,处理通风机实测振动信号的耗时为0.008 165 s,与广义变分模式分解算法相比,特征提取速度大幅提升。

  • Abstract

    The vibration signal of coal mine ventilator is a non-stationary multicomponent signal. Traditional methods for feature extraction of non-stationary signals suffer from poor adaptability and limited ability to identify weak characteristics of early faults in the ventilators. Additionally, the signal processing speed of feature extraction methods based on generalized Variational Mode Decomposition (VMD) is unable to meet the requirements of rapid feature extraction of ventilator vibration signals. To address these issues, a rapid feature extraction method for coal mine ventilator vibration signals based on improved VMD is proposed. On the basis of the generalized VMD algorithm, the multiplier alternating direction method was used for iterative solving, converting the constrained optimization problem into an unconstrained optimization problem. The improved VMD algorithm was applied to perform equivalent decomposition of the signals, obtaining an equivalent filter that matched the target signal features. The feature components of the ventilator vibration signals were quickly extracted based on the inner product transform principle. Simulation and experimental results showed that the improved VMD algorithm performed well in extracting feature components of different intensities, with good accuracy and noise resistance. The processing time for the measured ventilator vibration signals was 0.008 165 seconds. The feature extraction speed was significantly improved compared to the generalized VMD algorithm.

  • 关键词

    煤矿通风机振动信号非平稳信号特征提取变分模式分解等效滤波器内积变换

  • KeyWords

    coal mine ventilator;vibration signal;non-stationary signal feature extraction;variational mode decomposition;equivalent filter;inner product transformation

  • 基金项目(Foundation)
    国家自然科学基金项目(62441313);山西省重点研发计划项目(202003D111008);太原科技大学科研启动基金项目(20212038)。
  • DOI
  • 引用格式
    陶珑,郭燕飞. 基于改进变分模式分解的煤矿通风机振动信号特征提取[J]. 工矿自动化,2025,51(2):131-137.
  • Citation
    TAO Long, GUO Yanfei. Feature extraction of coal mine ventilator vibration signals based on improved variational mode decomposition[J]. Journal of Mine Automation,2025,51(2):131-137.
  • 图表
    •  
    •  
    • 基于改进变分模式分解的煤矿通风机振动信号特征提取流程

    图(9) / 表(1)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联