• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

低氮燃烧关键技术

来源:洁净煤技术

煤炭作为我国的主要能源,长期占据不可替代的重要地位。近年我国经济高速发展,雾霾等空气污染现象时有发生,环境污染不容忽视。虽然国内大部分燃煤电厂均已实现超低超净排放,而如何进一步降低氮氧化物等污染物排放,提高经济效益仍是研究重点。

行业视野

煤化工

类别

46个

关键词

51位

专家

12篇

论文

10071IP

点击量

3742次

下载量
  • 作者(Author): 朱书骏, 朱建国

    摘要:随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产过程中的NOx排放与燃煤火电厂和汽车尾气产生的NOx排放已成为空气污染的主要来源,而分解炉是降低水泥生产工艺中NOx排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和NOx排放特性的影响规律。试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平均温度为911 ℃,其产生的高温烟气温度稳定在750 ℃左右,高温烟气中NOx主要以NO和N2O的形式存在,其浓度分别为261.49×10-6和12.96×10-6。该股高温烟气将模拟实际回转窑产生的烟气进入分解炉内。在分解炉的上部区域(距离顶部0~2 000 mm区域)的温度为800~1 000 ℃,与实际分解炉运行温度一致,排放烟气中NOx主要以NO和N2O形式存在。随着中间配风位置的下移,煤粉燃烧放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长,导致NOx的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进NO的生成反应,其反应时间增加也促进了NO的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原NO的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反应的综合结果。随着配风位置的下移,该变化对NO的生成作用更加明显,故NO的排放浓度逐渐升高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内NO浓度是由石灰石催化的氧化过程和还原过程综合决定的。一级风量变小时,尾部CO浓度随之增加,烟气中NO浓度呈现降低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉内石灰石受热分解产生的CaO浓度增加,CaO催化NO还原反应更剧烈,从而NO浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程导致尾部的CO浓度升高。
    免费下载
    洁净煤技术
    2020年第01期
    945
    507
  • 作者(Author): 陈涛, 于洁, 赵鹏, 孙路石

    摘要:为达到严格的超低排放标准,目前国内绝大部分电站锅炉均实施了NOx排放控制技术改造。针对一台燃用烟煤的420 t/h四角切圆煤粉锅炉,将原双通道燃烧器改造为水平浓淡燃烧器并加装3层燃尽风(SOFA),从而达到低氮燃烧的效果。应用数值模拟方法进行方案论证,研究了一次风浓淡比、SOFA风率和SOFA风射流角度等参数对锅炉燃烧状况及NOx排放规律的影响,并提出最佳改造方案。随着浓淡比的增加,炉膛出口温度逐渐增加,而NOx含量逐渐降低。浓淡比为4∶1时,飞灰含碳量最低。随着浓淡比增大,CO浓度升高,增强了主燃区域的还原性,抑制挥发分含氮中间产物氧化成NO;另一方面,浓淡比增大使浓煤粉气流挥发分析出速率加快,强化挥发分含氮中间产物HCN和NH3将已生成的NO还原为N2;同时,淡侧气流煤粉浓度低,含氮基团析出量变小,与氧反应生成NO的量减少。随着SOFA风率的增加,炉膛出口烟温、飞灰含碳量增加,20% SOFA风率时,NOx浓度较高,SOFA风率由30%增加到40%时,NOx浓度基本保持不变。随着SOFA风率的增加,主燃区形成的低O2高CO浓度的强还原性气氛抑制了HCN及NH3被氧化成NO,反而促进了其与已生成的NO发生反应生成N2。此外,高SOFA风风率下,主燃区高温区缩小,生成的热力型NOx也相应减少。随着SOFA风射流角度上扬,还原区加长,有利于降低NOx浓度,但燃尽区的火焰中心会上升,煤粉燃尽时间变短,炉膛出口温度和飞灰含碳量上升。随射流角度增加,O2浓度降低而CO浓度升高,这是由于射流角度增大延迟了煤粉燃尽过程,增加了化学不完全燃烧损失;这种低氧高CO的强还原性气氛大大抑制了NOx生成。根据数值模拟结果,确定试验锅炉的低氮燃烧改造方案为:选择浓淡比为4∶1的水平浓淡燃烧器作为改造燃烧器,SOFA风率定为30%,SOFA射流角度上扬15°。改造后锅炉燃烧稳定,NOx排放显著降低,为220mg/Nm3左右(降幅达65%~70%),而飞灰含碳量保持在3%~4%,表明改造方案可达到良好的低氮燃烧效果。
    免费下载
    洁净煤技术
    2019年第05期
    692
    261
  • 作者(Author): 肖寒, 蒙晨玮, 吴玉新, 冯乐乐, 张海, 张缦

    摘要:合理的燃尽风率对降低NOx 排放十分关键,也显著影响大容量锅炉炉膛内的燃烧和传热特 性。 针对1000MW超超临界二次再热塔式锅炉开展三维CFD数值模拟,研究燃尽风(OFA)率对于 炉内NOx 生成及吸热量分配的影响规律。 模型采用贴体六面体非结构网格,通过用户自定义函数 (UDF)设置炉膛及各受热面的壁面温度;煤粉颗粒在炉内的运动及燃烧过程基于随机轨道法计算, 采用Realizablek-ε 模型模拟四角切圆炉内的湍流流动,采用离散坐标(discreteordinates,DO)法计算 炉内辐射传热;采用简化概率密度函数(probabilitydensityfunction,PDF)模型模拟湍流与化学反应的 耦合特性。 结果表明,燃尽风率对炉内的温度分布、炉膛的吸热比率以及污染物排放情况均存在显著 影响。 当燃尽风率在0~40%时,主燃区的平均温度随燃尽风含量的增大先升后降,而燃尽风区域的 平均温度则随着燃尽风率升高显著上升。 随着燃尽风率的升高,由于温度和氧含量变化等共同作用, 原始NOx 排放量先降后升,燃尽风率在11%~25%时达到最低。 随燃尽风率从0增至25%,锅炉炉 膛吸热比率降低12%,过热器、再热器、省煤器等对流受热面的吸热比例相应增加。 当燃尽风率大于 25%时,炉膛吸热比例的降低趋势减缓。 因此,建议在锅炉设计中应综合考虑OFA比例变化对炉膛 吸热量以及污染物排放的影响。 
    免费下载
    洁净煤技术
    2019年第04期
    666
    328
  • 作者(Author): 伍俊宇, 陈涛, 于洁, 孙路石

    摘要:低氮燃烧改造是燃煤电厂降低氮氧化物排放最主要的策略之一。 空气分级燃烧技术因其技 术成熟、成本低廉等优势在燃用烟煤的锅炉中得到广泛应用。 然而,随着煤/风比的进一步增加,NOx 降幅减小,未燃尽碳含量显著变大。 与燃用烟煤的锅炉相比,燃用低挥发分煤种锅炉的低氮改造工作 更加困难和复杂。 四角切圆贫煤锅炉的三次风会影响风煤混合、燃烧气氛和温度,这些都会对煤粉燃 烧过程和NOx 生成产生显著影响,若仅采用空气分级技术,并不能满足NOx 排放标准。 因此,在低氮 燃烧改造方案设计过程中,需寻求最佳的三次风布置方案以实现低氮高效燃烧。 将一台300MW四 角切圆贫煤燃烧锅炉作为研究对象,采取CFD数值模拟方法,考察了三次风布置方式对锅炉燃烧特 性的影响。 结果表明:当三次风布置在燃烧区下部时,下层一次风和三次风中的煤粉迅速着火燃烧, 温度攀升,火焰中心上移;NOx 还原区变长,此时炉膛出口NOx 浓度最低,为405mg/Nm3;三次风的下 移导致炉膛主燃区中上部氧量较少,煤粉不充分燃烧,燃尽率降低。 当三次风布置在主燃区中部时, 由于三次风风温较低,导致炉膛燃烧温度下降,一定程度上抑制了热力型NOx 的生成,炉膛出口NOx 排放量减少;三次风的喷入增加了主燃区过量空气系数,有利于煤粉的充分燃烧,燃尽率提高。 当三 次风布置在主燃区上部时,随着三次风位置的升高,三次风煤粉整体燃烧燃尽区域上移,折焰角附近 温度依次升高;三次风位置的上移增加了NOx 还原区的长度,三次风喷口位置越高,炉膛出口NOx 浓 度越低;三次风上移导致三次风煤粉在炉膛的停留时间变短,造成燃烧不充分,飞灰含碳量增加,燃尽 率降低。 此外,对改造后飞灰及大渣含碳量,炉膛出口烟温和NOx 浓度等参数进行现场测量,NOx 排 放浓度模拟值和测量值分别为445和448mg/Nm3,飞灰含碳量分别为1.92%和1.48%,数值模拟结 果与现场测量结果吻合较好。
    免费下载
    洁净煤技术
    2019年第04期
    784
    264
  • 作者(Author): 颜祝明, 马仑, 叶骥, 张成, 谭鹏, 方庆艳, 陈刚

    摘要:为探究掺混方式及配风方式对混煤燃尽率和NOx排放量的影响,以一台660 MW四角切圆锅炉为研究对象,开展混煤燃烧过程未燃尽碳和NOx排放的协同优化数值研究。结果表明,在深度空气分级条件下,未燃尽碳主要受停留时间、掺混方式、配风方式等因素共同影响;合理搭配掺混方式和配风方案可降低混煤未燃尽碳水平和炉内NOx总生成量,达到两者的协同优化。与炉外掺混相比,炉内掺混更加灵活,可通过优化低挥发分煤的燃尽程度来改善混煤整体的未燃尽碳水平。在炉内掺混方式下,均等配风将低挥发分煤置于上部燃烧器或正宝塔配风将低挥发分煤置于下部燃烧器,均有利于低挥发分煤的燃尽;而将高挥发分煤置于上部燃烧器更有利于NOx减排。综合考虑混煤未燃尽碳和NOx排放特性,将高挥发分煤置于上部燃烧器且采用正宝塔配风可为下部低挥发分煤的燃烧提供相对充足的氧量,提高低挥发粉煤的燃尽率,降低混煤未燃尽碳水平;上部高挥发分煤析出的挥发分中含有大量含氮中间产物HCN,可将已生成的NOx还原,有利于降低炉内混煤NOx生成量。
    免费下载
    洁净煤技术
    2019年第03期
    849
    272
  • 作者(Author): 杨协和, 蔡润夏, 张扬, 张建胜, 张海, 吕俊复

    摘要:煤气化后的煤气常用于氢氧化铝焙烧过程。煤气中一般含有一定量的氨气,造成焙烧过程的氮氧化物生成量较高。针对一种燃用煤气的氢氧化铝气态悬浮焙烧炉,采用空气分级的方案,开展了煤气低氮燃烧过程的研究,探究空气分级技术对焙烧炉内煤气燃烧氮氧化物生成的影响规律,从而指导实际焙烧炉内的燃烧组织设计及优化。利用BarracudaTM气固两相流动计算软件,分析了一台3 000 t/h的氧化铝焙烧炉的炉内气固流动及燃烧过程。结果表明,悬浮焙烧炉炉膛底部存在明显的高温区,局部高温负荷点较集中,最高温度达1 700 K。随着炉膛高度的增加,炉膛温度逐渐降低。同时由于气流回流的作用,炉膛内部在炉膛底部以及上部气流转向处存在明显的颗粒堆积造成的颗粒高浓度区域。基于气固流动计算得到炉内的温度场,耦合详细化学反应机理来考虑详细的化学反应过程,利用Chemkin Pro软件建立了反应器网络,通过数值计算探究空气分级技术对含氨煤气在焙烧炉内燃烧过程中NOx生成的影响。结果表明,燃用煤气的焙烧炉内生成的氮氧化物主要为燃料型氮氧化物。空气分级为20%时,空气分级对煤气燃烧氮氧化物生成的抑制效果有限。当空气比例为40%时,主燃烧区呈现还原性气氛,焙烧炉内煤气燃烧生成氮氧化物减排率能达到70.3%。
    免费下载
    洁净煤技术
    2019年第03期
    1191
    342
  • 作者(Author): 胡庆伟, 王为术

    摘要:为研究超临界燃煤锅炉的燃烧特性,针对 600 MW 对冲旋流燃烧锅炉,利用 CFD(computa-tional fluid dynamics)数值仿真软件研究了分级燃烧超临界锅炉内速度分布、颗粒轨迹分布、温度分布、组分分布特性及 NOx 释放规律。 采用标准 k-ε 模型和拉格朗日随机轨道模型模拟气相湍流流动和气固两相流动;对于固体燃料,借助离散相模型,同时采用非预混燃烧模型模拟煤粉在炉内的燃烧过程;对流项采用二阶迎风格式获得更加精确的物理解;考虑到锅炉炉膛温度高、辐射换热量大,采用P1 辐射模型计算气-气和气-固之间的辐射换热量;对锅炉壁面附近区域的流动传热计算采用标准壁面函数法,节省内存和计算时间。 结果表明:分级对冲燃烧锅炉截面速度呈对称分布,气流充满度好,燃烧稳定;旋流燃烧的方式使炉内出现回流区,加强了炉内气流与煤粉颗粒之间的扰动,强化了传热传质,同时延长了煤粉颗粒在炉内的停留时间;煤粉颗粒的直径影响着煤粉在炉内的燃烧过程,粒径越小,煤粉颗粒在炉内的停留时间越短,影响燃料的燃烧燃尽和锅炉效率,但粒径过大,煤粉颗粒在自身重力作用下落入冷灰斗,影响锅炉的正常安全运行,因此,合适的粒径对炉内燃烧过程十分重要;沿炉膛高度方向,炉内烟气平均温度先上升后下降,在燃尽区补充燃尽风使温度小幅降低,到达炉膛出口截面烟气平均温度约为1100 K;炉内各组分分布规律为:X=11.0935 m 截面,沿炉膛高度方向,O 2 体积分数先上升后下降,CO 2 体积分数逐渐升高,CO 体积分数先上升后下降;分级燃烧使炉内NOx 生成量整体下降,炉膛出口 NO x 浓度约为 385.14 mg/ m 3 。
    免费下载
    洁净煤技术
    2019年第02期
    752
    385
  • 作者(Author): 陈登高, 李振山, 蔡宁生

    摘要:空气分级燃烧是广泛采用的煤粉低氮燃烧技术,使用数值模拟方法对其进行模拟预测,有助于燃烧设备的改进并优化燃烧,实现在燃烧中进一步降低污染物排放。空气分级燃烧数值模拟中对还原区的准确模拟是预测氮氧化物排放、硫化氢高温腐蚀等的基础。笔者旨在提出一种合理预测煤粉空气分级燃烧还原性气氛的数值模拟方案,并将其应用于实际锅炉的模拟,并探讨了还原性气氛预测准确性对氮氧化物排放、焦炭燃烧等的影响。主要内容包括:① 对煤粉空气分级燃烧过程进行原理分析,提出数值模型开发及其应用的研究思路,即是通过小型电加热沉降炉模拟实际锅炉分级燃烧温度和组分浓度场,测量组分、焦炭转化等参数用于模型开发和验证,最后将开发的模型嵌入商用数值模拟平台,实现分级燃烧全过程模拟。基于此,搭建了能够反映实际锅炉空气分级燃烧温度场和组分浓度场特性的电加热沉降炉试验平台,并通过在线称重给煤速率、气体浓度组分测量,对试验系统的稳定性进行了验证。② 设计不同工况的空气分级燃烧试验,并获取沿程CO、H2、焦炭转化率等关键数据,基于数值模拟的动力学优化方法获取空气分级燃烧状态下还原区焦炭的气化反应动力学参数。通过开发用户自定义函数的方式在Fluent平台上实现了焦炭气化以及还原性气氛的模拟预测,并将其应用于600 MWe超临界墙式对冲炉分级燃烧的数值模拟。③ 分析比较了在模拟中不考虑气化和考虑气化时对炉内温度、还原区气氛、氮氧化物的分布和焦炭转化的影响。结果表明,文中提出的空气分级燃烧数值模拟方案能实现对实际锅炉空气分级燃烧特别是还原区的合理预测;在模拟中不考虑焦炭气化将导致还原性气体浓度明显偏低,进而导致颗粒燃尽推迟,炉膛出口氮氧化物浓度偏高。
    免费下载
    洁净煤技术
    2019年第01期
    894
    383

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联