• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

煤粉工业锅炉技术专刊

来源:洁净煤技术2020年第2期

我国能源资源赋存特点和能源结构决定了在较长时期内我国以煤为主的能源结构不会发生根本性改变。我国燃煤工业锅炉是仅次于燃煤发电的第二大燃煤型污染源,是煤炭清洁高效利用领域研究的重中之重,近年来国家出台了多个相关政策文件,提出要大力推广高效煤粉工业锅炉替代落后的燃煤小锅炉。

煤粉高效低氮燃烧技术是决定煤粉工业锅炉燃烧效率和污染物初始排放水平的核心技术,煤粉供料技术是决定煤粉工业锅炉是否稳定运行的核心技术,烟气超低排放净化技术决定了煤粉工业锅炉系统最终排放是否满足国家日益严苛环保要求,这些因素决定煤粉工业锅炉稳定运行、锅炉效率和污染物排放水平的核心技术研究将是未来的研究重点。

《洁净煤技术》编辑部积极响应国家环保政策,策划出版主题专刊:“煤粉工业锅炉技术”,以期帮助同行更加全面、深入地了解煤粉工业锅炉的发展现状。

行业视野

煤化工

类别

91个

关键词

35位

专家

20篇

论文

14231IP

点击量

14051次

下载量
  • 作者(Author): 张鑫, 陈隆

    摘要:高速煤粉燃烧器火焰喷射速度高达60~200m/s,炉膛内火焰较长,对流换热比例提高,使得炉膛内温度分布均匀,没有传统低速煤粉燃烧器火焰短,炉膛内局部过热和结焦等缺点。笔者以14MW高速煤粉燃烧器为研究对象,采用数值模拟的方法,研究旋流强度、二次风温度等关键参数对燃烧器内煤粉燃烧的影响,针对燃烧器内煤粉燃烧特点进行结构优化设计。对旋流强度研究结果表明,当旋流强度S=2.2、2.8、3.2及3.7时,燃烧器内回流区形状变化不大,从一次风喷口开始到旋流叶片位置结束,回流区环绕一次风管;最大回流量在一次风喷口附近,距离一次风喷口越远,回流量越小;旋流强度对一次风喷口附近最大回流量影响不大,喷口附近最大回流量均在0.45kg/s左右,当距喷口超过一定距离(L/H<0.35)时,旋流强度对回流量的影响开始变得明显,表现为旋流强度越大,回流区末端回流量越大,回流区末端回流量最大为0.30kg/s,最小为0.17kg/s。研究燃烧器喷口处燃烧状态表明,喷口处火焰旋流强度为0.10~0.28,与入口旋流强度正相关,火焰喷射速度150m/s,为中等旋流强度的高速旋流火焰;喷口中心区可燃性组分富集,缺氧,燃料和氧气分层分布。当旋流强度提高,喷口中心区可燃性组分浓度降低,CO浓度从11%降低到10%,H2浓度从1.65%降低到1.40%,焦炭浓度从0.14%降低到0.11%,喷口边缘O2浓度从13%降低到10%。旋流强度S=3.2和S=3.7时可燃组分和氧气浓度分布变化较小,说明旋流强度提高对燃烧的影响减弱。考察0、100和200 ℃下二次风温度对燃烧的影响,结果表明,当二次风温度提高,煤粉在燃烧器内的反应时间有所降低,从0.15s降低到0.11s,但燃烧器内的煤粉碳转化率提高20%,达到65%。对燃烧器结构进行优化,加入中心风,对比中心风直流和旋流与不加中心风3种状态,结果表明,加入旋流中心风和直流中心风后喷口中心区半径r≤75 mm范围内可燃组分浓度降低,采用直流时由于气流刚性较强,喷口中心区氧气浓度升高,采用旋流中心风对中心区氧浓度影响弱,对可燃组分浓度降低效果优于直流中心风。
    免费下载
    洁净煤技术
    2020年第02期
    707
    431
  • 作者(Author): 牛芳

    摘要:煤粉高效低氮燃烧技术是煤炭高效利用领域持续关注的热点。煤粉燃烧器作为煤粉锅炉的核心设备,研究适合多煤种、宽负荷条件的煤粉燃烧器设计原理及技术至关重要。逆喷射流稳燃机理大都应用在航空发动机和燃气轮机领域,在煤粉燃烧领域应用极少。前人大量研究了预燃室对旋流燃烧器流场特性的影响,但鲜见预燃室对逆喷旋流燃烧器流场影响的相关研究。为了探究预燃室对逆喷旋流煤粉燃烧器流场特性的影响规律,笔者针对一款20t/h逆喷旋流燃烧器,基于等温模化原理建立冷态燃烧器模型,利用热线风速仪和飘带法进行了流场测试和分析,结果表明:预燃室的存在不改变逆喷旋流煤粉燃烧器回流区环形的形状,但在逆喷旋流煤粉燃烧器内形成一个有利于煤粉着火的轴向速度低和湍流强度大的回流区。在X/D<1.3区域内,由于圆锥形预燃室对气流的挤压作用,预燃室的存在对回流区的面积起到抑制作用;在1.3<X/D<2.3区域内,由于预燃室的导流作用,预燃室的存在对回流区的形成起到促进作用;在X/D>2.3区域内,预燃室对燃烧器内部流场的作用减弱,可忽略不计。在预燃室的作用下,回流区最宽处的直径从0.97D降至0.86D,最大相对回流率位置从截面X/D=1后移到截面X/D=1.6处,相对回流率从1.17减小至0.99。预燃室的存在对二次风区域内的轴向平均速度和湍流度分布规律影响较大。无预燃室工况下,在X/D<0.6区域内,速度和湍流度均出现峰值,在X/D>1.6区域内峰值消失,内外二次风完全混合;有预燃室工况下,在X/D<0.6区域速度沿着径向方向逐渐增大,湍流度沿着径向方向逐渐减小,在X/D>1.6区域,速度和湍流度沿着径向方向分布均匀。预燃室的存在有利于回流区煤粉的稳定燃烧,工程应用中起到煤粉迅速着火以及难燃煤稳定燃烧的作用。另外预燃室壁面气流速度较大,刚性强,避免预燃室壁面超温或结焦现象的发生,延长了煤粉燃烧器无故障运行时间和整体的使用寿命。
    免费下载
    洁净煤技术
    2020年第02期
    527
    351
  • 作者(Author): 段璐, 王实朴

    摘要:高倍率灰钙循环脱硫(NGD)技术具有投资和运行成本低、占地面积小、节水和可避免有色烟羽等优点,在燃煤工业锅炉领域具有较好的发展前景,而已有研究主要关注脱硫反应过程及其影响因素,尚缺乏对NGD反应器内流场和能耗的认识。笔者基于熵产分析方法建立了NGD反应器能耗的定量分析模型,NGD反应器能耗包含因烟气散热引起的能耗和黏性流体流动引起的能耗,其中,黏性流体流动引起的能耗包含湍流耗散和壁面摩擦,此外,由于NGD反应器高度达20m以上,其进、出口压降还应考虑位置势能变化,因此,NGD进、出口压降包含位置势能变化、湍流耗散和壁面摩擦引起的压降。以某30 t/h煤粉工业锅炉配套的NGD反应器为研究对象,采用CFD方法模拟脱硫反应器内的流场分布,并在此基础上通过能耗分析模型研究脱硫反应器内的能耗组成和分布。结果表明,CFD方法和能耗分析模型计算的NGD进、出口压降与测量值的偏差分别为0.4%和9.6%,因此,CFD方法和能耗分析模型能较为准确地预测脱硫反应器内黏性流体流动引起的能耗,NGD反应器内黏性流体流动和烟气散热引起的能耗分别占NGD总能耗的96.2%和3.8%,可见黏性流体流动对NGD能耗起主导作用,位置势能变化、湍流耗散和壁面摩擦引起的压降分别为237.6、347.4和57.5 Pa,可见湍流耗散对NGD反应器能耗起主导作用。将NGD反应器划分为上部主体反应区、中部加速区和下部烟气入口区,由于黏性流体流动过程中的能量耗散来自不同流层速度差引起的摩擦耗散,因此能耗大小主要取决于不同流层间的速度梯度,而中部加速区平均速度较大且流场分布极不均匀,导致单位体积湍流熵产远高于其他区域,因此其体积虽仅占3.6%,但其熵产占NGD反应器总熵产的53.8%;上部主体反应区速度分布较为均匀且平均速度较小,但其体积占NGD反应器体积的83.3%,因此中部的熵产仍然较大,占总熵产的40.1%;下部烟气入口区流场分布极为不均匀但平均流速较小,单位体积熵产率从下往上逐渐增大,其体积比为13.1%,熵产占总熵产的比值为6.1%。可见,上部和中部是能耗的主要区域,尤其是中部加速区是降低NGD反应器能耗的主要目标区域。
    免费下载
    洁净煤技术
    2020年第02期
    502
    340
  • 作者(Author): 李美军

    摘要:可再生能源生物质清洁低碳、易于获取、利于着火,含硫、氮量少且属于碳中性物质,但其能量密度低。在煤粉中大比例掺混生物质(生物质/煤粉质量比大于5∶5)可有效改善煤粉着火特性,碳排放水平接近燃烧天然气,且污染物排放显著降低,进而达到节能减排目的。目前研究主要集中在低掺混比例(小于5∶5)下生物质与煤粉的混燃特性,针对北方常见的玉米秸秆、稻杆和玉米芯等生物质与煤粉在大掺混比例下的燃烧特性,尚有待深入。笔者利用热重分析技术分别研究了煤粉与不同生物质种类(玉米秸秆、稻杆及玉米芯)在不同掺混比例下(5∶5、6∶4、7∶3和8∶2)的混燃特性,分析生物质种类和掺混比例对混合燃料的着火温度、燃尽温度、交互反应以及燃烧特性指数等的影响,确定了不同生物质的最佳掺混比例。结果表明:掺混比例对混合样品失重曲线的影响从大到小依次为玉米秸秆、玉米芯和稻杆。随掺混比例增加,第1阶段最大质量变化速率逐渐增大且燃烧进程前移,第2阶段则逐渐减小,这是由于挥发分相对增加且焦炭相对减少的原因。混合样品的着火温度和燃尽温度比纯煤粉分别下降约100和60 ℃。随掺混比例的增加,玉米芯着火温度逐渐减小,玉米秸秆和稻杆则先减小后增大,且均在7∶3时达到最小;燃尽温度均呈现下降趋势,下降幅度由大到小分别为玉米芯、稻杆和玉米秸秆。玉米秸秆和稻杆在8∶2时燃尽性能较差。混合样品发生不同程度的交互作用,该交互作用正是生物质的促进和抑制的协同作用,使3种生物质均在5∶5时对煤粉燃烧抑制作用大;玉米秸秆和稻杆在7∶3时、玉米芯在6∶4、8∶2时促进作用大。同时,3种生物质的燃烧特性指数远大于煤粉,随掺混比例的增大,玉米芯的燃烧特性指数变化最大并在8∶2时达到最大值,6∶4和7∶3时几乎相同;稻杆的变化最小且在7∶3时达到最大值;玉米秸秆在7∶3和8∶2时几乎相同并达到最大值。小范围改变掺混比例时,燃烧特性指数变化不大。这可能是由于燃烧特性指数不仅与着火温度和燃尽温度有关,还与样品在其主要燃烧过程的反应速率有关,而煤粉在焦炭燃烧阶段的反应剧烈程度高于生物质挥发分析出阶段,使不同掺混比例的混合样品出现以上现象。
    免费下载
    洁净煤技术
    2020年第02期
    503
    396
  • 作者(Author): 罗伟

    摘要:焦炭气化反应对空气深度分级工况下燃烧及污染物的生成具有重要影响。笔者采用滴管炉试验与数值计算相结合的方法,研究了主燃区过量空气系数SR1在1.2→0.6变化过程中,焦炭气化对空气深度分级工况下煤粉燃烧和NOx排放特性的影响规律。通过对比滴管炉试验数据与传统模型和改进模型(考虑焦炭气化)结果可知,传统模型对空气分级燃烧的还原性气氛预测存在一定缺陷,改进模型与试验结果较吻合。滴管炉试验及改进模型计算结果表明,空气深度分级工况下,主燃区极度缺氧,燃烧过程由最初的挥发分着火(R1和R2)和焦炭不完全氧化(R4)过渡到以焦炭气化反应(R5和R6)为主导的燃烧状态,大量CO生成,高浓度CO2逐渐被消耗,直至还原区段结束,随着燃尽风加入,O2含量增加,CO被迅速消耗(以R2为主),CO2生成。空气分级工况下NOx排放特性表现为:燃烧器附近NOx浓度高,伴随还原性气氛的形成,出现一定程度的下降后保持较低的NOx水平,随着燃尽风的加入,出现一定程度的“反弹”,这是因为还原区结束时,一部分未完全被还原的氮中间体在燃尽风加入后被迅速氧化造成的。
    免费下载
    洁净煤技术
    2020年第02期
    581
    333
  • 作者(Author): 杨石

    摘要:随着我国对大气污染物排放监管力度的日益严格,NOx控制技术已广泛应用于工业生产的各个领域。作为一种直接、简便的NOx排放控制技术,富氧空气燃烧技术已经出现在燃气锅炉和内燃发动机等行业,然而在燃煤锅炉行业中却鲜有应用。为了验证富氧空气燃烧技术在煤粉工业锅炉中的NOx减排效果,笔者以神府烟煤作为燃料,利用两段式滴管炉试验系统模拟煤粉在锅炉内燃烧的实际情况,采用热态试验方法,研究了烟煤富氧空气分级燃烧的NOx排放特性,并与单级供风、空气分级燃烧2种燃烧方式下的NOx排放情况进行对比。考察了主燃区温度、二次风配比(以主燃区过量氧气系数表示)、二次风氧浓度等关键因素对NOx排放的影响。结果表明:富氧空气分级燃烧的NOx排放显著低于单级供风燃烧,同时也低于空气分级燃烧的NOx排放。主燃区温度为1300~1500 ℃时,富氧空气分级燃烧的NOx排放减少比例比分级配风燃烧提高了6~12个百分点;富氧空气分级燃烧条件下,随主燃区温度升高,煤粉燃烧更加充分,燃料中N元素分解成NHi、HCN等大量中间产物,使主燃区气氛的还原性增强,被还原的NOx比例增加。因此,NOx排放降低且NOx排放减少比例呈现上升趋势;富氧空气分级燃烧的二次风配比对NOx排放具有显著影响,随着主燃区过量氧气系数的升高,NOx排放均呈现先降低后升高的趋势。因此存在最佳二次风配比,使NOx排放浓度最低。主燃区温度为1300 ℃时,最佳主燃区过量氧气系数约为0.58;主燃区温度为1500 ℃时,最佳主燃区过量氧气系数约为0.55;在主燃区过量空气系数给定的条件下,提高二次风氧浓度可以延长煤粉颗粒在主燃区的停留时间,并在煤粉颗粒表面形成局部富氧环境,促进煤粉充分燃烧,从而增强主燃区气氛的还原性,降低NOx的生成。因此,当二次风氧浓度为21%~31%时,NOx排放随二次风氧含量的升高而降低。随着二次风氧浓度的逐渐升高,NOx排放的降低趋势逐渐放缓。
    免费下载
    洁净煤技术
    2020年第02期
    415
    301
  • 作者(Author): 李慧, 杨石, 周建明

    摘要:半焦是低阶煤经低温热解后的产物,其中半焦粉与煤粉工业锅炉常用煤种烟煤相比价格低廉。若能将半焦粉用作煤粉工业锅炉的燃料,既可拓宽煤粉工业锅炉的适用燃料范围,又可增强煤粉工业锅炉的市场竞争力。由于半焦挥发分低、固定碳高,实现其着火和稳定燃烧需要更高的温度,同时,降低NOx初始排放也是一个技术难题。为了实现半焦在煤粉工业锅炉中的稳定燃烧及NOx排放的降低,采用两段式滴管炉开展半焦空气分级燃烧NOx排放规律研究。笔者对半焦空气不分级燃烧NOx排放规律进行了研究,主要探究了主燃区温度(1000~1400 ℃)及过量空气系数的影响,为后续空气分级燃烧降低NOx的效果提供对比依据。半焦空气分级燃烧试验主要研究了主燃区温度(1000~1400 ℃)及二次风比例(0.4~0.8)的影响,并从燃尽率、NOx减少比例、灰样微观孔隙和形貌等方面进行论证,试验结果表明,在空气不分级燃烧条件下,即燃尽风配风比例为0时,随着主燃区温度升高, NOx排放浓度随之迅速升高;随着过量空气系数增加,NOx浓度先迅速增加,过量空气系数大于1.15时,NOx浓度增速变缓;在空气分级燃烧中,相同主燃区温度条件下,二次风比例由高到低变化时,NOx排放呈先迅速下降后缓慢回升的变化趋势,燃尽率先快速升高而后趋于平缓。二次风比例为0.56时(即燃尽风率为0.39),燃尽率达90%,NOx排放浓度降至最低,为120 mg/m3以下,此时是试验条件下的最佳二次风比例。
    免费下载
    洁净煤技术
    2020年第02期
    687
    383
  • 作者(Author): 潘昊

    摘要:燃煤锅炉产生的SO2、NOx是大气污染物的重要组成部分,随着环境形势的日益严峻,国家环保政策对电站锅炉和中小型工业锅炉的污染物排放标准提出了更高要求。煤粉工业锅炉烟气净化系统采用手动调节方式控制,系统惯性大,已不能满足最新环保排放标准。针对这些问题,基于可编程控制器(PLC)和以太网通讯架构,结合神东矿区某煤粉锅炉站限值排放改造工程,设计了集成化的污染物排放控制系统。在分析各系统工艺流程的基础上,分别提出了脱硫、脱硝系统的优化控制策略。脱硫系统基于站内原有NGD系统进行改造,增加了脱硫剂储运设备,在灰钙循环和增湿活化控制的基础上设计了自动脱硫剂补充和调节逻辑。脱硝系统增设了臭氧制备和输送装置,采用SNCR-臭氧协同方式,并设计了串级启动和自动投送控制逻辑。控制系统采取分布式硬件架构部署,采用西门子SIMATIC系列PLC作为主控制器,基于优化的控制逻辑,分别组态脱硫子系统、SNCR子系统及臭氧子系统。通过以太网络构建通讯子网,共享各子系统内部数据,以保证设备之间的安全联锁,以及脱硫、脱硝系统对锅炉负荷情况的跟踪响应,试验结果表明,控制系统能够在起炉后10min内将SO2浓度控制在100mg/m3以内,在锅炉变负荷工况条件下可维持SO2浓度低于设定限值。多台锅炉连续运行时,各炉脱硫剂缓冲仓平均用料周期约为80min,平均补充周期约为4.5min,平均等待时间约为7min,控制逻辑能够保证脱硫剂连续不间断供给。起炉后控制系统依次投入SNCR及臭氧系统,自动调节尿素溶液和臭氧的投加量,能够在20min内将NOx浓度控制在100mg/m3以内。与改造前相比,锅炉站长周期运行时SO2、NOx排放浓度均显著下降,由100~200mg/m3降低至50~100mg/m3;根据运行期间80h数据,SO2排放浓度平均值由163.55mg/m3降低至72.54mg/m3,NOx排放浓度平均值由160.85mg/m3降至71.06mg/m3,均满足国家与地方的环保排放标准。污染物排放波动性较改造前亦有所降低,SO2浓度标准差由21.04降至18.14,NOx浓度标准差由25.09降至15.84。
    免费下载
    洁净煤技术
    2020年第02期
    496
    393

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联