• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于神经网络的钻井液漏失裂缝宽度预测研究
  • 87
  • 作者

    王健 徐加放 赵密福 王博闻

  • 单位

    中国石油大学(华东)石油工程学院油气钻完井技术国家工程研究中心非常规油气开发教育部重点实验室中国石油化工股份有限公司东北分公司中联煤层气有限责任公司

  • 摘要
    针对钻井过程中储层裂隙发育情况不明,防漏堵漏方法和材料选择困难的问题,结合实际井史资料,提出了一种基于神经网络的储层裂缝宽度预测方法。首先通过相关性分析,对储层裂缝宽度的主要相关因素进行分析并对其进行排序,选取了泵压、钻井液排量以及钻速等7种主要相关因素作为输入参数并利用附加动量算法和变学习率算法对模型收敛速度进行提升,同时对模型结构进行优选。其次利用遗传算法(GA)和Adaboost算法对BP神经网络(BPNN)进行优化,克服了其易陷入局部极小值的问题,提升了模型的预测精度。最后建立了Adaboost-GA-BP神经网络预测模型对储层裂缝宽度进行预测研究,同时对比分析了模型的预测精度。研究结果表明,相关参数与储层裂缝宽度的相关性由高到低依次为漏失速度与漏失量、泵压、钻井液排量、钻速、井深和塑性黏度。另外,附加动量算法和变学习率算法使得训练结束时绝对误差和降低了27%,显著提升了模型性能,同时通过GA算法优化模型的权值和阈值以及利用Adaboost算法进行集成优化进一步提升了预测精度,建立的Adaboost-GA-BP神经网络储层裂缝宽度预测模型误差和相关系数分别为18%和0.98,与随机森林等其他模型相比,模型的预测精度高,可为勘探开发过程中的裂缝宽度计算以及堵漏方案的制定提供一定的指导。
  • 关键词

    防漏堵漏储层裂缝宽度神经网络遗传算法Adaboost算法

  • 引用格式
    王健,徐加放,赵密福,等.基于神经网络的钻井液漏失裂缝宽度预测研究[J/OL].煤田地质与勘探,1-8[2024-08-31].http://kns.cnki.net/kcms/detail/61.1155.p.20230809.1623.006.html.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联