• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于DeepLab v3+的综放工作面含矸率预测研究
  • Title

    Study on the prediction of gangue content rate in fully mechanized caving face based on DeepLab v3+

  • 作者

    王志峰王家臣李良晖安博超

  • Author

    WANG Zhifeng;WANG Jiachen;LI Lianghui;AN Bochao

  • 单位

    中国矿业大学(北京) 能源与矿业学院厚煤层绿色智能开采教育部工程研究中心

  • Organization
    School of Energy and Mining Engineering, China University of Mining and Technology-Beijing
    Engineering Research Center of Green and Intelligent Mining for Thick Coal Seam, Ministry of Education
  • 摘要
    针对综放工作面真实煤矸堆叠状态下的体积含矸率很难获取的问题,提出一种基于DeepLab v3+的综放工作面含矸率预测方法。构建了煤矸堆积体图像数据集,采用半自动的数据标注方法和限制对比度自适应直方图均衡化法对煤矸图像进行预处理。运用DeepLab v3+模型进行煤矸图像语义分割,进而计算煤矸图像的投影面积含矸率。利用PFC3D数值模拟软件,基于重建的三维煤矸块体建立数值模型,模拟顶煤放落和刮板输送机运煤过程,通过fish语言读取每个矸石或煤的体积,计算得到煤矸堆积体体积含矸率。通过分析不同顶煤厚度条件下刮板输送机上煤矸堆积体的投影面积含矸率与体积含矸率的量化关系,建立了煤流的体积含矸率预测模型。实验结果表明:DeepLab v3+模型的准确率、平均像素准确率和平均交并比分别为97.68%,97.72%,95.33%,均高于经典语义分割模型FCN8s和PSPNet,实现了煤矸堆积体投影面积含矸率的精准快速识别;体积含矸率预测模型的决定系数R2为0.982 8,预测效果较好。
  • Abstract
    To tackle the challenge of accurately determining the volumetric gangue content rate under actual stacking conditions of coal-gangue in fully mechanized caving faces, a prediction method based on the DeepLab v3+ model was proposed. A dataset consisting of images depicting coal-gangue accumulation was constructed, and a semi-automatic data labeling method, along with Contrast Limited Adaptive Histogram Equalization (CLAHE), was employed for image preprocessing. The DeepLab v3+ model was utilized for the semantic segmentation of coal-gangue images, which facilitated the calculation of the projected area gangue content rate. A numerical model was established using the PFC3D numerical simulation software based on the reconstructed three-dimensional coal-gangue block, simulating the top coal drop and the coal transport process via scraper conveyor. The volume of each gangue or coal particle was extracted using the FISH programming language, enabling the calculation of the volumetric gangue content rate of the coal-gangue accumulation. By analyzing the quantitative relationship between the projected area gangue content rate and the volumetric gangue content rate under varying top coal thickness conditions, a predictive model for the volumetric gangue content rate of coal flow was developed. Experimental results indicated that the accuracy, mean pixel accuracy, and mean intersection-over-union (IoU) of the DeepLab v3+ model were 97.68%, 97.72%, and 95.33%, respectively, all surpassing those of classical semantic segmentation models such as FCN8s and PSPNet. This enabled precise and rapid identification of the projected area gangue content rate of coal-gangue accumulations. The coefficient of determination (R2) for the volumetric gangue content rate prediction model was 0.9828, demonstrating robust predictive performance.
  • 关键词

    智能放煤综放工作面含矸率煤矸识别体积含矸率语义分割DeepLabv3+模型

  • KeyWords

    intelligent coal caving;fully mechanized caving faces;gangue content rate;coal- gangue identification;volumetric gangue content rate;semantic segmentation;DeepLab v3+ model

  • 基金项目(Foundation)
    国家自然科学基金项目(51934008,52404159);中国矿业大学(北京)本科教育教学改革与研究项目(J241107)。
  • DOI
  • 引用格式
    王志峰,王家臣,李良晖,等. 基于DeepLab v3+的综放工作面含矸率预测研究[J]. 工矿自动化,2024,50(10):90-96.
  • Citation
    WANG Zhifeng, WANG Jiachen, LI Lianghui, et al. Study on the prediction of gangue content rate in fully mechanized caving face based on DeepLab v3+[J]. Journal of Mine Automation,2024,50(10):90-96.
  • 相关文章
  • 图表
    •  
    •  
    • 技术路线

    图(13) / 表(3)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联