• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
矿井瓦斯浓度Lagrange-ARIMA实时预测模型研究
  • Title

    Study on Lagrange-ARIMA real-time prediction model of mine gas concentration

  • 作者

    王鹏伍永平王栓林宋超吴学明

  • Author

    WANG Peng,WU Yongping,WANG Shuanlin,SONG Chao,WU Xueming

  • 单位

    西安科技大学安全科学与工程学院煤炭绿色安全高效开采国家地方联合工程研究中心陕西煤业化工技术研究院有限责任公司现代煤炭开采技术研究所西安科技大学能源学院西安科技大学西部矿井开采及灾害防治教育部重点实验室煤炭科学技术研究院有限公司安全分院煤炭资源高效开采与洁净利用国家重点实验室

  • Organization
    1.College of Safety Science and Engineering,Xi’an University of Science and Technology,Xi’an,China;2.National &Local United Engineering Research Center of Green Safety Efficient Mining,Xi’an ,China;3.Institute of Modern Coal Mining Technology,Shaanxi Coal Chemical Industry Technology Research Institute Company Limited,Xi’an ;4.College of Energy Engineering,Xi’an University of Science and Technology,Xi’an ,China;5.Key Laboratory of Western Mine Exploitation and Hazard Prevention Ministry of Education,Xi’an University of Science and Technology,Xi’an ,China;6.Safety Branch,China Coal Research Institute,Beijing ,China;7.State Key Laboratory of Coal Mining and Clean Utilization,Beijing ,China
  • 摘要

    矿井瓦斯浓度监测是瓦斯事故最直接有效的防控手段之一,为提高监测信息的利用效率,提出了一种瓦斯浓度Lagrange-ARIMA实时预测模型。首先应用拉伊达准则实现瓦斯浓度监测缺失值构建,其次采用滑动Lagrange插值方法进行缺失值预测,最后基于自回归差分移动平均模型(ARIMA)序贯学习,依据L1范数最小化原则,确定出Lagrange-ARIMA序贯学习窗口合适尺度,进行瓦斯浓度实时预测。实例仿真显示:Lagrange-ARIMA实时预测模型处理瓦斯浓度时间序列缺失值平均误差为1.397%,当序贯学习窗口尺度为85时,预测的瓦斯浓度序列平均绝对误差(MAE)为0.0118。相比传统ARIMA静态学习模型,建立的Lagrange-ARIMA模型学习窗口尺度降低了90.3%,建模复杂度显著降低,MAE降低了16.3%,预测精度能满足现场需求。

  • Abstract
    Mine gas concentration monitoring is one of the most direct and effective means of prevention and control of gas accidents,in order to improve the utilization efficiency of monitoring information,a real-time gas concentration prediction model based on Lagrange-ARIMA is proposed.Firstly,PauTa criterion is applied to construct missing values of gas concentration monitoring.Secondly,sliding Lagrange interpolation method is used to predict missing values.Finally,based on ARIMA sequential learning and L1 norm minimization principle,Lagrange-ARIMA sequential learning window is determined to realize real-time prediction of gas concentration values.The simulation results show that the average error of Lagrange-ARIMA real-time prediction model is 1.397% when dealing with the missing value of gas concentration time series.When the width of sequential learning window is 85,the mean absolute error of predicted gas concentration series is 0.011 8.Compared with the traditional ARIMA static learning model,the width of learning window of Lagrange-ARIMA model is reduced by 90.3%,and the modeling complexity is significantly reduced.The mean absolute error is reduced by 16.3%,and the prediction accuracy can meet requirements in the field.
  • 关键词

    数据预处理Lagrange插值瓦斯浓度自回归差分移动平均模型(ARIMA)实时预测

  • KeyWords

    data preprocessing; Lagrange interpolation; gas concentration; Autoregressive Integrated Moving Average Model;real-time prediction

  • 相关文章
  • 相关专题
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联