• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于大数据与AI驱动的智能煤矿目标位置服务技术
  • Title

    Intelligent coal mine target location service technology based on big data and AI driven

  • 作者

    胡青松张赫男李世银孙彦景

  • Author

    HU Qingsong,ZHANG Henan,LI Shiyin,SUN Yanjing

  • 单位

    中国矿业大学 地下空间智能控制教育部工程研究中心中国矿业大学 信息与控制工程学院中国矿业大学 徐州市智能安全与应急协同工程研究中心

  • Organization
    1.Engineering Research Center of Intelligent Control for Underground Space,Ministry of Education,China University of Mining and Technology,Xuzhou , China;2.School of Information and Control Engineering,China University of Mining and Technology,Xuzhou ,China;3.Xuzhou Engineering Research Center of Intelligent Industry Safety and Emergency Collaboration,China University of Mining and Technology,Xuzhou ,China
  • 摘要

    在大数据和人工智能驱动下,矿山目标与事件源位置可以提供丰富的位置服务,这些服务远超出了人员定位、装备定姿、机器人导航、无人驾驶等单个系统的范畴,宜从系统观点和全局角度进行统一设计。给出了矿山目标位置服务的框架结构,研究了其位置对象层、位置获取层、位置传输层、位置挖掘与服务层的主要构成和功能;探讨了矿山目标位置服务的3大关键技术,其中:①矿井动目标精确定位技术重点研究距离测量、距离测量优化、目标节点位置解算和定位系统研发;②矿山位置大数据技术研究大数据的获取、存储和分析策略;③矿山目标位置服务人工智能算法则主要研究感知智能、生产智能和决策智能。总结了矿山目标位置服务在应急撤离与应急救援、遥控采煤与无人采煤、矿井位置大数据应用等3大领域的研究热点,主要包括规划最佳逃生路径,确定被困人员位置与救援,事故原因分析与追责,采掘装备定位定姿与导航,多机器人协同定位与导航,矿井无人驾驶技术与装备,事件时空演化规律分析,基于轨迹的调度决策,煤矿生产过程一张图等。指出矿山目标位置服务正成为煤矿的基础设施,其发展趋势是构建融合时空属性的泛在一张网,融合位置推理的决策模型库和融合位置服务的智能矿山平台。

  • Abstract
    Dirven by big data and artificial intelligence,the locations of mine objects and events can provide abundant services which are far beyond the scope of single system,such as personnel localization,equipment orientation determination,robot navigation and unmanned driving,so it is better to design the mine location services from the perspective of systematic and global view. This paper proposes the framework of mine location service composed of four layers,i.e. location object layer,location acquisition layer,location transmission layer,location excavation and service layer. The three key technologies are discussed. The precise localization technology of moving objects in mines focuses on the distance measuring,measuring optimization,object location computation and localization system development. The location big data of mines studies the collection,storing and analysis of big data. The artificial intelligence algorithms for mine location services mainly consider the perception intelligence,production intelligence and decision-making intelligence. Then the hot research areas are surveyed,including the emergency evacuation and rescue,remote mining and unmanned mining,mine location service applications. These hot areas mainly include the following fields:optimization of escape path,determination locations of trapped workers and making rescue,cause analysis and responsibility definition of accidents,localization,orientation and navigation of mining devices,cooperative localization and navigation among multiple robots,unmanned driving technologies and equipment for coal mines,accident time-space evolution laws,scheduling and decision-making based on trajectories,“one map” in production process of coal mines. The mine location service is becoming an infrastructure of coal mines,and its future directions are the ubiquitous network with space-time properties,decision-making model library with location reasoning and intelligent mine platform with location services.
  • 关键词

    矿山目标位置服务智能煤矿无人采煤矿山物联网动目标定位应急救援

  • KeyWords

    mine location service;intelligent coal mine;unmanned coal mining;mine internet of things;moving objects localization;emergency rescue

  • 文章目录
    0 引言
    1 矿山目标位置服务的框架结构
    2 矿山目标位置服务关键技术
    2.1 矿井动目标精确定位技术
    2.2 矿山位置大数据技术
    2.3 矿山目标位置服务人工智能算法
    3 矿山目标位置服务的热点方向
    3.1 应急撤离与灾后救援
    3.2 遥控采煤与无人采煤
    3.3 矿井位置大数据应用
    4 矿山目标位置服务的发展趋势
    4.1 构建融合时空属性的泛在一张网
    4.2 构建融合位置推理的决策模型库
    4.3 构建融合位置服务的智能矿山平台
    5 结论
  • 引用格式
    胡青松,张赫男,李世银,等.基于大数据与AI驱动的智能煤矿目标位置服务技术[J].煤炭科学技术,2020,48(8):121-130.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 矿山目标位置服务的框架结构

    图(5) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联