采煤机是煤矿综采工作面的关键设备,由于煤层结构复杂,导致截割载荷复杂多变,并且截割载荷难以直接测量。因此,针对采煤机截割载荷难以直接检测难题,研究了采煤机交流异步电机的机械特性,提出了基于软测量建模技术的截割载荷预测方法。首先,通过分析采煤机交流异步电机的机械特性,得出截割载荷与截割电机的转速、电流符合非线性关系,运用软测量建模方法可以预测截割载荷。然后,以截割电机的转速和电流作为输入变量,运用ELM神经网络的软测量建模方法建立采煤机截割载荷软测量模型。最后,运用ELM,BP,RBF3种神经网络软测量建模方法对采煤机电机载荷进行预测,以均方误差和相关系数作为预测评价指标,结果表明:ELM神经网络软测量建模方法在预测精度和预测速度方面都优于BP神经网络和RBF神经网络软测量建模方法。运用ELM神经网络软测量建模方法能够准确、快速预测采煤机截割载荷,为采煤机恒功率截割和牵引智能调速提供了理论基础。
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会