针对煤矿机械齿轮箱振动信号中含有大量噪声干扰成分导致齿轮箱故障特征提取难的问题,提出了一种基于粒子群优化变分模态分解(PSO-VMD)与最小熵反褶积(MED)的煤矿机械齿轮箱故障诊断方法。该方法首先利用PSO算法对VMD中直接影响分解效果的惩罚系数与分量个数进行优化搜索,得到最大化分解性能的最优参数组合,并利用优化后的VMD方法对齿轮箱振动信号进行分解,得到一系列本征模态函数(IMF)分量;然后,利用MED方法对与原信号相关度最大的IMF分量进行降噪处理,凸显故障冲击特征;最后,对降噪后的IMF分量进行Hilbert包络解调,从而提取故障特征。实验结果表明,该方法能够准确提取故障特征,实现齿轮箱故障诊断。
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会