• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
Mn基低温SCR催化剂抗中毒研究进展
  • Title

    Research progress on anti-poisoning of Mn-based low temperature SCR catalysts

  • 作者

    张成李君臣方鼎立谭鹏马仑方庆艳陈刚

  • Author

    ZHANG Cheng,LI Junchen,FANG Dingli,TAN Peng,MA Lun,FANG Qingyan,CHEN Gang

  • 单位

    华中科技大学煤燃烧国家重点实验室

  • Organization
    State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology
  • 摘要

    选择性催化还原技术是目前成熟可靠的脱硝技术,广泛应用于固定源氮氧化物的脱除。商用钒钛催化剂的温度窗口窄且高,为了满足非电力行业更低温度窗口的脱硝需求,低温NH3-SCR备受关注。近年来,Mn基催化剂因其良好的低温活性被认为是最具有前景的低温SCR催化剂。详细讨论不同种类锰基催化剂的性能研究以及锰基催化剂抗硫、抗水、抗碱金属/碱土金属(K、Na、Ca、Mg)和重金属(As、Zn、Pb)中毒的机理和改性方法,针对不同的抗中毒研究和改性方法进行了分析和总结,获得结论如下:① 传统非负载型Mn基催化剂最佳制备方法为共沉淀法,脱硝效率达100%;微生物处理法是新型绿色合成方法,经济环保性高,为绿色合成Mn基催化剂提供了可行路径;② 掺杂Ce、Fe、Cu、Ni、Ho、Nd、Zr、Co和Eu等元素能够有效提高Mn基催化剂的脱硝活性和抗中毒性能;可考虑将其作为“核-壳”结构的“壳”材料,提高Mn基催化剂的抗中毒性能;③ 特定孔径的分子筛是解决催化剂硫中毒的理想材料,但目前传质阻力的问题尚未解决,还需进一步优化分子筛的制备方法和工艺;④ Mn基催化剂的抗碱金属中毒集中于掺杂改性研究,改性策略分为两大类:一是增加催化剂表面耐碱的酸性位点,二是直接抑制碱金属对Mn活性组分的影响;目前上述2种改性策略的缺陷在于改性催化剂长期运行脱硝的经济性不高,需考虑从根本上杜绝催化剂与碱金属的接触;⑤ Mn基催化剂抗重金属中毒研究较少,建议开展低温段重金属迁移转化规律研究和Mn基催化剂改性的抗重金属中毒机理;⑥ 中毒后的催化剂对环境危害较大,中毒催化剂对环境危害评估和可再生利用的研究也有待进一步推进;⑦ Mn催化剂不同类型中毒之间的协同效应还有待研究,以满足Mn基催化剂的实际应用需求。

  • Abstract

    Selective catalytic reduction technology is a mature and reliable denitrification technology, which is widely used in the removal of fixed source nitrogen oxides. The temperature window of commercial vanadium-titanium catalysts is narrow and high. In order to meet the denitration requirements of lower temperature windows in the non-power industries, low-temperature NH3-SCR has received extensive attention. In recent years, manganese-based catalysts have been regarded as the most promising low-temperature SCR catalysts due to their good low-temperature activity. The performance research of different kinds of manganese-based catalysts and the mechanism of anti-sulfur, water-resistance, alkali/alkaline-earth metal (K, Na, Ca, Mg) and heavy metal poisoning (As, Zn, Pb) on manganese-based catalysts was discussed in detail. Different anti-poisoning studies and modification methods were analyzed and summarized. The conclusions are listed as follows: ①  The best preparation method of traditional unsupported Mn-based catalysts is co-precipitation method, and the denitration efficiency is up to 100%. Microbial treatment method is a new green synthesis method, with high economic and environmental protection, which provides a feasible way for green synthesis of Mn-based catalysts. ② Doping elements such as Ce, Fe, Cu, Ni, Ho, Nd, Zr, Co, and Eu can effectively improve the denitration activity and anti-poisoning performance of Mn-based catalysts. They can be considered as "shell" materials of "core-shell" structure to improve the anti-poisoning performance of Mn-based catalysts. ③ Molecular sieve with specific pore size is an ideal material to solve the catalyst sulfur poisoning, but the problem of mass transfer resistance has not yet been solved, and the preparation method and process of molecular sieve need to be further optimized. ④ The anti-alkali metal poisoning of Mn-based catalysts is focused on doping modification. The modification strategies are divided into two categories: one is to increase the acid sites of alkali resistance on the surface of catalysts, the other is to directly inhibit the influence of alkali metals on the active components of Mn. At present, the defects of the above two modification strategies are that the modified catalyst is not economical in long-term operation of denitrification, so it is necessary to fundamentally eliminate the contact between the catalyst and alkali metals. ⑤ There are few studies on Mn-based catalysts′resistance to heavy metal poisoning. It is suggested to carry out research on the migration and transformation of heavy metals in low-temperature section and the mechanism of resistance to heavy metal poisoning by modification of Mn-based catalysts. ⑥ The poisoned catalyst is harmful to the environment, and the research on the environmental hazard assessment and renewable utilization of the poisoned catalyst also needs to be further promoted. ⑦ The synergistic effects between different types of poisoning of Mn catalysts remains to be studied tomeet the practical application requirements of Mn based catalysts.

  • 关键词

    氮氧化物Mn基低温SCR催化剂脱硝性能抗中毒性能分子筛掺杂改性

  • KeyWords

    NOx;Mn-based low-temperature SCR catalyst;denitrification performance;anti-poisoning performance;molecular sieve;doping modification

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52076090)
  • 文章目录

    0 引言

    1 Mn基SCR催化剂性能

       1.1 非负载型Mn基催化剂

       1.2 负载型Mn基催化剂

    2 Mn基催化剂抗中毒机理

       2.1 抗硫抗水机理

       2.2 抗碱金属中毒机理

       2.3 抗重金属中毒机理

    3 结论及展望

  • 引用格式
    张成,李君臣,方鼎立,等.Mn基低温SCR催化剂抗中毒研究进展[J].洁净煤技术,2022,28(10):110-135.
    ZHANG Cheng,LI Junchen,FANG Dingli,et al.Research progress on anti-poisoning of Mn-based low temperature SCR catalysts[J].Clean Coal Technology,2022,28(10):110-135.
  • 相关文章
  • 相关专题
  • 图表
    2种Ce@MnOx核壳结构催化剂TEM图
    2种Ce@MnOx核壳结构催化剂TEM图
    220 ℃、SO2存在下2种催化剂的NO转化率的稳定性
    220 ℃、SO2存在下2种催化剂的NO转化率的稳定性
    MnOx@Fe2O3的结构及抗硫机制示意
    MnOx@Fe2O3的结构及抗硫机制示意
    H-MnO2@TiO2催化剂合成示意
    H-MnO2@TiO2催化剂合成示意
    改性对催化剂理化性质和反应机理影响
    改性对催化剂理化性质和反应机理影响
    SCR催化剂保护装置示意和实物图片
    SCR催化剂保护装置示意和实物图片
    MnOx中空形貌的SEM图像
    MnOx中空形貌的SEM图像
    MnCeOx@Z5和MnCeOx/Z5催化剂耐水耐硫的可能机制
    MnCeOx@Z5和MnCeOx/Z5催化剂耐水耐硫的可能机制
    原位沉积法制备MnOx柱状累托石催化剂原理
    原位沉积法制备MnOx柱状累托石催化剂原理
    不同负载的催化剂上进行瞬态反应的原位红外谱
    不同负载的催化剂上进行瞬态反应的原位红外谱
    掺杂Ho前后Mn-Ce/TiO2催化剂的氮气选择性
    掺杂Ho前后Mn-Ce/TiO2催化剂的氮气选择性
    CeO2掺杂Mn/TiO2抗碱金属中毒机理
    CeO2掺杂Mn/TiO2抗碱金属中毒机理
    不同温度和O3气氛下,MnOx/γ-Al2O3催化剂的NO转化率
    不同温度和O3气氛下,MnOx/γ-Al2O3催化剂的NO转化率
    500×10-6 NH3经不同预处理后的原位红外谱图
    500×10-6 NH3经不同预处理后的原位红外谱图
    不同Mn质量比的Mn-Ce/Al2O3催化剂的NO转化率
    不同Mn质量比的Mn-Ce/Al2O3催化剂的NO转化率
    4种催化剂的脱硝活性曲线
    4种催化剂的脱硝活性曲线
    Mo-MnOx/γ-Al2O3低温NH3-SCR反应机制
    Mo-MnOx/γ-Al2O3低温NH3-SCR反应机制
    4种催化剂样品的NH3-TPD曲线
    4种催化剂样品的NH3-TPD曲线
    MnOx/AC在不同负载情况下的活性测试
    MnOx/AC在不同负载情况下的活性测试
    Sb掺杂对抗碱金属Na的影响机制
    Sb掺杂对抗碱金属Na的影响机制
    MnO2负载量对NO氧化效率影响
    MnO2负载量对NO氧化效率影响
    MnCoOx-HNT抗碱金属中毒机理
    MnCoOx-HNT抗碱金属中毒机理
    多壁碳纳米管SEM和TEM图
    多壁碳纳米管SEM和TEM图
    硫酸预处理后的催化剂在Na中毒情况下的脱硝活性曲线
    硫酸预处理后的催化剂在Na中毒情况下的脱硝活性曲线
    不同结晶时间的MnSAPO-18催化剂对NOx的催化活性
    不同结晶时间的MnSAPO-18催化剂对NOx的催化活性
    Mn-Fe/SAPO-34催化剂上的反应机理
    Mn-Fe/SAPO-34催化剂上的反应机理
    硫酸预处理对MnCoCrOx抗碱金属Na中毒的影响机制
    硫酸预处理对MnCoCrOx抗碱金属Na中毒的影响机制
    等离子体增强Cu-Mn/SAPO-34上的NH3-SCR反应机理
    等离子体增强Cu-Mn/SAPO-34上的NH3-SCR反应机理
    掺杂Co前后催化剂的NH3瞬态反应曲线
    掺杂Co前后催化剂的NH3瞬态反应曲线
    3种催化剂在180 ℃、GHSV=75 000 mL/(g·h)下的NO转化率
    3种催化剂在180 ℃、GHSV=75 000 mL/(g·h)下的NO转化率
    掺杂Co前后催化剂在150 ℃下对500×10-6NH3吸附的原位红外光谱
    掺杂Co前后催化剂在150 ℃下对500×10-6NH3吸附的原位红外光谱
    Mn-Ce/TiO2催化剂上块状硫酸盐形成途径
    Mn-Ce/TiO2催化剂上块状硫酸盐形成途径
    Mn-Ce/AC催化剂表面As2O3中毒示意
    Mn-Ce/AC催化剂表面As2O3中毒示意
    不同催化剂上“SO2+H2O”和硫酸盐对NOx转化的影响
    不同催化剂上“SO2+H2O”和硫酸盐对NOx转化的影响
    不同铅盐中毒催化剂的脱硝活性曲线
    不同铅盐中毒催化剂的脱硝活性曲线
    SO2和SO2+H2O在2种催化剂上对NO转化率的影响
    SO2和SO2+H2O在2种催化剂上对NO转化率的影响
    Mn-Ce/AC催化剂在NH3-SCR反应中可能的铅中毒模型
    Mn-Ce/AC催化剂在NH3-SCR反应中可能的铅中毒模型
    在SO2和H2O存在下反应前后催化剂的XPS光谱
    在SO2和H2O存在下反应前后催化剂的XPS光谱
    Mo对γ-Fe2O3抗砷性能影响
    Mo对γ-Fe2O3抗砷性能影响
    Ho改性前后SO2中毒机理
    Ho改性前后SO2中毒机理
    4种催化剂的NOx转化率
    4种催化剂的NOx转化率
    E-R机制和L-H机制对SCR反应贡献
    E-R机制和L-H机制对SCR反应贡献
    Eu促进Mn/Ti催化剂的抗硫机理
    Eu促进Mn/Ti催化剂的抗硫机理
    SO2和H2O对MnTi和MnTiEu-0.3催化剂SCR活性的影响
    SO2和H2O对MnTi和MnTiEu-0.3催化剂SCR活性的影响
    CuMnTiOx催化剂表面氧化还原循环
    CuMnTiOx催化剂表面氧化还原循环
    CuMn3O4催化剂表面抗中毒机理
    CuMn3O4催化剂表面抗中毒机理
    Sm对MnFeOx催化剂催化活性和耐硫性能的促进机制模型
    Sm对MnFeOx催化剂催化活性和耐硫性能的促进机制模型
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联