• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究
  • Title

    Study on prediction of coal spontaneous combustion based on MSWOA-BP

  • 作者

    孔彪朱思想胡相明杨涛赵旭帅斐达特万姝含

  • Author

    KONG Biao;ZHU Sixiang;HU Xiangming;YANG Tao;ZHAO Xushuai;FEI Date;WAN Shuhan

  • 单位

    山东科技大学安全与环境工程学院华北科技学院矿山安全学院兖矿能源集团股份有限公司济宁二号煤矿

  • Organization
    School of Safety and Environmental Engineering, Shandong University of Science and Technology
    Mine Safety College, North China Institute of Science and Technology
    Jining No. 2 Coal Mine, Yanzhou Coal Mining Company Group Co. , Ltd.
  • 摘要
    为实现煤自燃的高效预测预警,提出了一种改进鲸鱼优化算法结合BP神经网络(MSWOA-BP)的煤自燃温度预测模型。根据煤自燃升温实验进行了模型算法的有效性验证,进一步对比分析了粒子群优化(PSO-BP)模型、灰狼优化(GWO-BP)模型及标准鲸鱼优化(WOA-BP)模型的预测效果和性能,结果显示,MSWOA-BP、GWO-BP、WOA-BP和PSO-BP模型预测结果训练阶段平均百分比误差(MAPE)为1.7359%、2.6518%、6.1655%、6.5701%,测试阶段MAPE为3.0393%、6.0723%、6.7341%、7.6035%,表明MSWOA-BP预测模型具有更高的预测精度和稳定性。应用MSWOA-BP模型进行煤矿现场的温度预测,得到预测温度与现场实测温度的相对误差为2.3%~12.1%,实现了煤矿井下温度的快速预测,可为实现煤自燃的高效预测预警提供一种新方法。
  • Abstract
    In order to realize the efficient prediction and early warning of coal spontaneous combustion, an improved whale optimization algorithm combined with BP neural network (MSWOA-BP) for coal spontaneous combustion temperature prediction model was proposed, and the effectiveness of the model algorithm was verified based on coal spontaneous combustion heating experiments. The predict effects and performance of gray wolf optimization (GWO-BP) model, standard whale optimization ( WOA-BP) neural network model and particle swarm optimization (PSO-BP) model were compared and analyzed. It shows that the average percentage error (MAPE) of the four models are 1. 735 9%, 2. 651 8%, 6. 165 5% and 6. 570 1% in the training stage, while during the testing phase they are 3. 039 3%, 6. 072 3%, 6. 734 1%, and 7. 603 5%. This indicates that the MSWOA-BP prediction model has higher prediction accuracy and stability. MSWOA-BP was applied to predict the temperature at the coal mine site. Comparing the predicted results with the measured temperature, the relative error range is within 2. 3% to 12. 1%, which realizes the rapid prediction of underground coal mine temperature. It provides a new method for achieving efficient prediction and warning of coal spontaneous combustion.
  • 关键词

    煤自燃预测预报指标气体煤温改进鲸鱼优化算法预测模型

  • KeyWords

    coal spontaneous combustion;forecasting;Oct. 2023 矿业安全与环保indicator gas;coal temperature;improved whale optimization algorithm;prediction model

  • 基金项目(Foundation)
    国家自然科学基金面上项目(52374219);山东省自然科学基金项目(ZR2023ME115)
  • DOI
  • 引用格式
    孔彪,朱思想,胡相明,等. 基于改进鲸鱼算法优化 BP 神经网络的煤自燃预测研究[J]. 矿业安全与环保,2023,50(5):30-36.
  • Citation
    KONG Biao,ZHU Sixiang,HU Xiangming,et al. Study on prediction of coal spontaneous combustion based on MSWOA-BP[J].Mining Safety & Environmental Protection,2023,50(5):30-36.
  • 相关专题
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联