• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于FBEC−YOLOv5s的采掘工作面多目标检测研究
  • Title

    Research on multi object detection in mining face based on FBEC-YOLOv5s

  • 作者

    张辉苏国用赵东洋

  • Author

    ZHANG Hui;SU Guoyong;ZHAO Dongyang

  • 单位

    安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室安徽理工大学 机械工程学院矿山智能技术与装备省部共建协同创新中心

  • Organization
    State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology
    School of Mechanical Engineering, Anhui University of Science and Technology
    Collaborative Innovation Center for Mining Intelligent Technology and Equipment
  • 摘要

    针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC−YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特征提取和语义信息捕捉能力;其次,在YOLOv5s模型颈部融合BiFPN网络,以通过其双向跨尺度连接和快速归一化融合操作,实现多尺度特征的快速捕捉与融合;最后,采用ECIoU损失函数代替CIoU损失函数,以提升检测框定位精度和模型收敛速度。实验结果表明:① 在满足煤矿井下实时检测要求的同时,FBEC−YOLOv5s模型的准确率较YOLOv5s模型的准确率提升了3.6%。② 与YOLOv5s模型相比,FBEC−YOLOv5s模型的平均检测精度均值上升了2.8%,平均检测精度均值为92.4%,能够满足实时检测要求。③ FBEC−YOLOv5s模型的综合检测性能好,能够在恶劣环境、多目标间相互遮挡严重及目标尺度跨度大导致检测精度降低的情况下表现出良好的实时检测能力且具有较好的鲁棒性。

  • Abstract

    A multi object detection algorithm based on FBEC-YOLOv5s is proposed to address the issues of reduced detection precision caused by large object scale spans, severe obstruction between multiple objects, and harsh environments in mining faces. Firstly, the FasterNet network is introduced into the backbone network to enhance the model's feature extraction and semantic information capture capabilities through its residual connection and batch standardization module. Secondly, the BiFPN network is fused in the neck of the YOLOv5s model to achieve rapid capture and fusion of multi-scale features through its bidirectional cross scale connection and fast normalization fusion operation. Finally, the ECIoU loss function is used instead of the CIoU loss function to improve the positioning precision of the detection frame and the convergence speed of the model. The experimental results show the following points. ① While meeting the real-time detection requirements of coal mines, the precision of the FBEC-YOLOv5s model has increased by 3.6% compared to YOLOv5s model. ② Compared with the YOLOv5s model, the average detection precision of the FBEC-YOLOv5s model has increased by 2.8%, with an average detection precision of 92.4%, which can meet real-time detection requirements. ③ The FBEC-YOLOv5s model has good comprehensive detection performance, demonstrating good real-time detection capability and robustness in condition that detection accuracy is reduced caused by harsh environments, severe mutual obstruction between multiple objects, and large object scale spans.

  • 关键词

    采掘工作面多目标检测FasterNet网络双向特征金字塔网络YOLOv5sBiFPNECIoU损失函数

  • KeyWords

    mining face;multi object detection;FasterNet network;bidirectional feature pyramid network;YOLOv5s;BiFPN;ECIoU loss function

  • 基金项目(Foundation)
    安徽省高等学校科学研究项目(2022AH050834);安徽理工大学引进人才科研启动基金项目(2022yjrc61);安徽理工大学矿山智能技术与装备省部共建协同创新中心开放基金项目(CICJMITE202206);Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC22KF24)。
  • DOI
  • 引用格式
    张辉,苏国用,赵东洋. 基于FBEC−YOLOv5s的采掘工作面多目标检测研究[J]. 工矿自动化,2023,49(11):39-45.
  • Citation
    ZHANG Hui, SU Guoyong, ZHAO Dongyang. Research on multi object detection in mining face based on FBEC-YOLOv5s[J]. Journal of Mine Automation,2023,49(11):39-45.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • FBEC−YOLOv5s的网络结构

    图(6) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联