• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于AI视频分析的煤矿瓦斯抽采钻场远程监督管理方法
  • Title

    Remote supervision and management method for coal mine gas extraction drilling site based on AI video analysis

  • 作者

    胡金成张立斌蒋泽姚超修蒋志龙王正义

  • Author

    HU Jincheng;ZHANG Libin;JIANG Ze;YAO Chaoxiu;JIANG Zhilong;WANG Zhengyi

  • 单位

    中煤科工集团常州研究院有限公司天地(常州)自动化股份有限公司常州工学院 土木建筑工程学院

  • Organization
    CCTEG Changzhou Research Institute
    Tiandi(Changzhou) Automation Co., Ltd.
    School of Civil Engineering and Architecture, Changzhou Institute of Technology
  • 摘要

    传统的煤矿瓦斯抽采钻场视频监控系统在钻孔施工及退钻杆期间,只具有监测和存储功能,重要的过程参数或信息只能由监测人员通过视频录像查看,存在记录施工信息易出错、钻场管理人员难以连续监控现场视频等问题。针对上述问题,提出了一种基于AI视频分析的煤矿瓦斯抽采钻场远程监督管理方法。该方法包括信息牌检测、OCR识别、退杆分析3种算法。信息牌检测用于检测当前施工环节,OCR识别用于识别信息牌上打钻流程与施工信息,退杆分析用于分析收孔阶段的退杆数,从而实现打钻作业的全过程分析与管控。在接收并开始打钻任务后,启用信息牌检测与OCR识别服务,根据依次识别到的开孔、收孔、封孔流程与施工参数,自动保存施工信息。当识别出开始收孔,启用退杆分析服务;当识别出结束收孔,停止退杆分析服务。实验结果表明:信息牌检测算法的识别准确率为96%。PaddleOCR识别算法平均用时17.51 ms,较EasyOCR、ChineseOCR识别算法分别降低了25.25,4.34 ms;PaddleOCR识别算法的准确率较其他2种识别算法分别提高了5.75%,2.29%,召回率较其他2种识别算法分别提高了9.77%,2.36%。退杆分析算法能够有效识别现场退杆数,准确率约为95%。

  • Abstract

    The traditional video monitoring system for coal mine gas extraction drilling site only has monitoring and storage functions during drilling construction and drill pipe withdrawal. Important process parameters or information can only be viewed by monitoring personnel through video recordings, which poses problems such as construction information being prone to errors and difficulty for drilling site management personnel to continuously monitor on-site videos. It order to solve the above problems, A remote supervision and management method for coal mine gas extraction drilling sites based on AI video analysis has been proposed. This method includes three algorithms: information board detection, OCR recognition, and drill pipe withdrawal analysis. Information board detection is used to detect the current construction phase. PaddleOCR recognition is used to recognize the drilling process and construction information on the information board. The drill pipe withdrawal analysis is used to analyze the number of drill pipes withdrawn during the closing drilling phase, thereby achieving the full process analysis and control of drilling operations. After receiving and starting drilling tasks, the method uses information board detection and PaddleOCR recognition services, and automatically saves construction information based on the identified drilling, closing, and sealing processes and construction parameters. When identifying the start of hole closing, the method enables the drill pipe withdrawal analysis service. When identifying the end of hole closing, the method stops the pipe withdrawal analysis service. The experimental results show that the recognition accuracy of the information board detection algorithm is 96%. The average time of PaddleOCR recognition algorithm is 17.51 ms, which is 25.25 ms lower than EasyOCR and 4.34 ms lower than Chinese OCR recognition algorithms, respectively; The accuracy of the PaddleOCR recognition algorithm has been improved by 5.75% and 2.29% compared to the other two recognition algorithms, respectively. The recall rate of the PaddleOCR recognition algorithm has been improved by 9.77% and 2.36% compared to the other two recognition algorithms, respectively. The pipe withdrawal analysis algorithm can effectively identify the number of pipes withdrawn on site, with an accuracy rate of approximately 95%.

  • 关键词

    瓦斯抽采钻场AI视频分析打钻退杆分析信息牌检测OCR识别全过程分析

  • KeyWords

    gas extraction drilling site;AI video analysis;drilling;pipe withdrawal analysis;information board detection;OCR recognition;whole process analysis

  • 基金项目(Foundation)
    江苏省产学研合作项目(BY2022109);天地科技股份有限公司科技创新创业资金专项项目(2020-TD-ZD010);中煤科工集团常州研究院科研项目(2022TY2012)。
  • DOI
  • 引用格式
    胡金成,张立斌,蒋泽,等. 基于AI视频分析的煤矿瓦斯抽采钻场远程监督管理方法[J]. 工矿自动化,2023,49(11):167-172.
  • Citation
    HU Jincheng, ZHANG Libin, JIANG Ze, et al. Remote supervision and management method for coal mine gas extraction drilling site based on AI video analysis[J]. Journal of Mine Automation,2023,49(11):167-172.
  • 相关专题
  • 图表
    •  
    •  
    • 打钻作业流程

    图(10) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联