• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于VMD分解和随机矩阵理论的异常用电状态检测
  • Title

    Detection of Abnormal Power Consumption State Based on VMD Decomposition and Random Matrix Theory

  • 作者

    秦志沁韩玉环张毅郭志军许英玮金泽璇

  • Author

    QIN Zhiqin;HAN Yuhuan;ZHANG Yi;GUO Zhijun;XU Yingwei;JIN Zexuan

  • 单位

    国网山西省电力公司晋城供电公司

  • Organization
    State Grid Shanxi Electric Power Company Jincheng Power Supply Company
  • 摘要
    【目的】目前需要快速准确地判别用户异常用电行为。【方法】基于智能电表数据,提出了一种结合数据分解和随机矩阵理论的异常状态检测模型,实现了对用户用电异常行为的识别。通过变分模态分解算法(variationalmodedecomposition,VMD)剔除电力数据噪点,消除噪点数据影响。并将随机矩阵理论(randommatrixtheory,RMT)与自回归滑动平均模型(auto-regressivemovingaveragemodel,ARMA)相结合,提高RMT对时间序列的适用性,实现了对用电异常状态的判定。【结果】以某地区的实际用电数据为例进行实验,验证了该方法针对数据样本较大且非高斯分布的情况具有便捷性和高效性,为用电异常行为的识别提供了新方向。
  • Abstract
    【Purposes】 Users’ abnormal power consumption behaviors need to be distinguished quickly and accurately. 【Methods】 An abnormal state detection model is proposed on the basis of smart meter data and data decomposition and random matrix theory, realizing the identification of users’ abnormal power consumption behaviors.The variational mode decomposition (VMD) al-gorithm is used to eliminate the noise of power data and the influence of noise data. The Random Matrix Theory (RMT) is combined with the Auto-Regressive Moving Average Model (ARMA) to improve the applicability of RMT to time series and realize the judgment of abnormal state of electricity consumption. 【Findings】 Taking the actual power consumption data of a certain area as an example, the method conveniency and efficiency for the case of large data samples and non-Gaussian distribution have been verified, which provides a new direction for the identification of abnormal power consumption behavior.
  • 关键词

    用户行为随机矩阵核密度估计异常用电数据分解

  • KeyWords

    user behavior; random matrix; kernel density estimation; abnormal power con-sumption; data decomposition

  • 基金项目(Foundation)
    国网山西省电力公司科技项目(5205E0220003)
  • DOI
  • 引用格式
    秦志沁,韩玉环,张毅,等.基于 VMD 分解和随机矩阵理论的异常用电状态检测[J].太原理工大学学报,2024,55(1):66-72.
  • Citation
    QIN Zhiqin,HAN Yuhuan,ZHANG Yi,et al.Detection of abnormal power consumption state based on VMD decomposition and random matrix theory[J].Journal of Taiyuan University of Technology,2024,55(1):66-72.
  • 相关专题
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联