• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
智能采矿数智赋能技术内涵与应用范式
  • Title

    Connotation and application paradigm of intelligent mining data intelligence enabling technology

  • 作者

    付翔王开王然风

  • Author

    FU Xiang;WANG Kai;WANG Ranfeng

  • 单位

    太原理工大学 矿业工程学院智能采矿装备技术全国重点实验室山西焦煤集团有限责任公司 博士后工作站

  • Organization
    College of Mining Engineering, Taiyuan University of Technology
    State Key Laboratory of Intelligent Mining Equipment Technology
    Post-doctoral workstation, Shanxi Coking Coal Group Co., Ltd.
  • 摘要

    数据与智能是驱动精准化、高效化和安全化智能采矿可持续发展的核心引擎。提出了基于“数据−算法−装备−生态”四维协同架构的智能采矿数智赋能技术体系,构建了涵盖数据治理、智能决策、装备执行与人机协同的采矿全链条智能化闭环框架。数据层通过标准化存储架构与多模态数据融合,建立全矿井数据资产平台,支撑实时数据流服务与历史数据挖掘;算法层结合工业机理模型与群智能算法,构建基于多目标优化的动态决策体系,实现采矿工序协同优化与安全权重优先控制;装备层依托智能新型煤机装备群,开发装备自适应控制与多机协同联动机制;生态层通过数字孪生、人在回路优化与专家规则嵌入,构建“人−机−智−环”共生体系,驱动系统动态迭代。基于上述框架,提出了智能采矿“数据流−智能流”双向协同机制与分层解耦逻辑,实现毫秒级装备控制、秒级算法决策与分钟级人工干预的动态响应,构建AI与人类双向赋能的新型采矿生产关系。以综采工艺为典型场景,基于“需求牵引−数据驱动−智能决策−装备执行”的闭环赋能路径,构建了综采工艺的智能采矿数智赋能应用范式,建立了“自动化工艺执行→AI策略生成→人工校验→人机协同控制”循环流程,支持人工/分工/批准/否决多模式动态切换,可实现采煤工艺自动化与AI辅助决策的深度协作,推动采矿行业从“机器替代人”向“人智增强机”范式转型。

  • Abstract

    Data and intelligence are the core engines driving the precision, efficiency, and safety of sustainable intelligent mining development. A system for intelligent mining data intelligence enabling technology based on the "data-algorithm-equipment-ecology" four-dimensional collaborative architecture was proposed, and an intelligent closed-loop framework covering data governance, intelligent decision-making, equipment execution, and human-machine collaboration for the entire mining chain was constructed. The data layer established a comprehensive mine data asset platform through standardized storage architecture and multi-modal data fusion, supporting real-time data flow services and historical data mining. The algorithm layer combined industrial mechanism models and swarm intelligence algorithms to construct a dynamic decision-making system based on multi-objective optimization, achieving collaborative optimization of mining processes and safety-weighted priority control. The equipment layer relied on intelligent new coal machine equipment groups, developing equipment adaptive control and multi-machine collaborative linkage mechanisms. The ecology layer built a "human-machine-intelligence-environment" symbiosis system through digital twins, human-in-the-loop optimization, and expert rule embedding, driving the system's dynamic iteration. Based on the above framework, a bidirectional coordination mechanism of "data flow-intelligence flow" and a layered decoupling logic were proposed, achieving dynamic responses with millisecond-level equipment control, second-level algorithmic decision-making, and minute-level human intervention, establishing a new mining production relationship with bidirectional enabling between AI and humans. Using fully mechanized mining process as a typical scenario, a closed-loop enabling path based on "demand-driven - data-driven - intelligent decision-making - equipment execution" was constructed, establishing an application paradigm of intelligent mining data intelligence enabling for fully mechanized mining technology. A cyclical process of "automated process execution → AI strategy generation → human verification → human-machine collaborative control" was established, supporting dynamic switching between multiple modes, including manual, division of labor, approval, and rejection. The deep collaboration between coal mining automation and AI-assisted decision-making facilitated the transition of the mining industry from the "machine replacing humans" paradigm to the "human intelligence enhancing machines" paradigm.

  • 关键词

    智能采矿数智赋能技术煤矿人工智能AI决策人机协同

  • KeyWords

    intelligent mining;data intelligence enabling technology;coal mine artificial intelligence;AI decision;human-machine collaboration

  • 基金项目(Foundation)
    国家自然科学基金项目(52274157);山西省基础研究计划联合资助项目(202403011241002);“科技兴蒙”行动重点专项项目(2022EEDSKJXM010)。
  • DOI
  • 引用格式
    付翔,王开,王然风. 智能采矿数智赋能技术内涵与应用范式[J]. 工矿自动化,2025,51(3):1-8.
  • Citation
    FU Xiang, WANG Kai, WANG Ranfeng. Connotation and application paradigm of intelligent mining data intelligence enabling technology[J]. Journal of Mine Automation,2025,51(3):1-8.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 智能采矿“数据−算法−装备−生态”四维协同架构

    图(4) / 表(3)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联