• 访客 您好
  •  | 
  • 注册
  • 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
带式输送机托辊故障诊断及协同管控研究综述
  • Title

    Review on idler fault diagnosis and coordinated control in belt conveyors

  • 作者

    邢震田野新包建军齐智峰周李兵叶柏松张蓉

  • Author

    XING Zhen;TIAN Yexin;BAO Jianjun;QI Zhifeng;ZHOU Libing;YE Baisong;ZHANG Rong

  • 单位

    中煤科工集团常州研究院有限公司煤炭智能开采与岩层控制全国重点实验室天地(常州)自动化股份有限公司乔治亚理工学院 计算机科学学院

  • Organization
    CCTEG Changzhou Research Institute
    State Key Laboratory of Intelligent Coal Mining and Strata Control
    Tiandi (Changzhou) Automation Co., Ltd.
    College of Computing, Georgia Institute of Technology
  • 摘要

    托辊作为带式输送机的关键部件,其故障频发严重影响煤矿生产效率与安全。目前国内外在托辊故障诊断技术和带式输送机管理控制策略方面开展了广泛研究,然而尚未形成一套被广泛认可且行之有效的监测与管控手段。通过分析托辊故障的类型及机理,指出井下带式输送机托辊故障诊断的特殊性及面临的挑战。梳理了托辊故障诊断技术及托辊故障后协同管控的研究现状:在故障状态感知技术方面,探讨了振动、声音、温度及图像信号感知技术的原理与应用;在数据处理及特征提取方面,探讨了各类信号的处理方法及特征提取策略;在故障识别方法方面,探讨了从传统方法到机器学习、深度学习及多源信息融合的托辊故障识别方法的技术演进过程;在托辊故障后协同管控方面,探讨了目前面临控制系统复杂性高、不同控制策略之间的兼容性差、状态监测数据的准确性和实时性难以保证等问题。基于上述研究,指出托辊故障诊断技术虽取得一定进展,但仍存在故障辨识度不高、覆盖范围有限、检测物理量单一、无法对故障进行分类及判断程度、未能评估故障可能引发的风险,以及缺乏全面的管控策略等问题,提出托辊故障诊断技术发展方向:从单一监测向多维度融合监测发展、从稀疏覆盖向密集全面覆盖迈进、从表象诊断向本质分析探究故障演化规律、从被动应对到主动预防的转变并推动从局部管控向全局协同管控的升级。

  • Abstract

    As a critical component of belt conveyors, idlers are prone to frequent failures, significantly impacting the efficiency and safety of coal mine operations. Extensive research has been conducted worldwide on idler fault diagnosis techniques and coordinated control strategies for belt conveyors. However, a universally accepted and effective monitoring and control framework is still lacking. This paper provides a comprehensive review of idler fault types and failure mechanisms, emphasizing the unique challenges associated with diagnosing faults in underground belt conveyors. The current state of research on idler fault diagnosis and post-failure coordinated control is systematically analyzed in four key areas: ① Fault State Perception Technologies: The principles and applications of vibration, acoustic, thermal, and image-based sensing technologies are discussed. ② Data Processing and Feature Extraction: Various signal processing methods and feature extraction strategies are examined. ③ Fault Identification Methods: The evolution of idler fault identification techniques is reviewed, ranging from traditional approaches to advanced machine learning, deep learning, and multi-source information fusion. ④ Post-Failure Coordinated Control: Challenges such as the high complexity of control systems, poor compatibility between different control strategies, and difficulties in ensuring the accuracy and real-time performance of condition monitoring data are highlighted. Despite notable advancements in idler fault diagnosis technologies, several challenges persist, including low fault identification accuracy, limited monitoring coverage, single-parameter detection, and the inability to classify faults or assess their severity. Furthermore, there is inadequate evaluation of potential fault-induced risks and a lack of comprehensive management strategies. Based on these findings, future research directions are proposed: advancing from single-parameter monitoring to multi-dimensional integrated monitoring, transitioning from sparse coverage to dense and comprehensive surveillance, shifting from surface-level diagnosis to in-depth analysis of fault evolution mechanisms, progressing from reactive responses to proactive fault prevention, and promoting the transformation from localized management to global coordinated control.

  • 关键词

    带式输送机托辊托辊故障诊断带式输送机协同管控筒体破损托辊轴承失效筒体变形主轴变形

  • KeyWords

    belt conveyor idler;idler fault diagnosis;belt conveyor coordinated control;shell damage;idler bearing failure;shell deformation;spindle deformation

  • 基金项目(Foundation)
    江苏省科技成果转化专项资金项目(BA2022040);天地(常州)自动化股份有限公司科研项目(2024TY0001);中国煤炭科工集团有限公司科技创新创业资金专项项目(2021-2-GH004)。
  • DOI
  • 引用格式
    邢震,田野新,包建军,等. 带式输送机托辊故障诊断及协同管控研究综述[J]. 工矿自动化,2025,51(3):39-53.
  • Citation
    XING Zhen, TIAN Yexin, BAO Jianjun, et al. Review on idler fault diagnosis and coordinated control in belt conveyors[J]. Journal of Mine Automation,2025,51(3):39-53.
  • 相关专题
  • 图表
    •  
    •  
    • 托辊故障分类分级精细化诊断及综合协同管控

    图(1) / 表(1)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
累计访问量:27711666,今日访问人数:45835 站长统计