• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于随机特征的矿井视频图像中的人员跟踪技术
  • Title

    Tracing technology of personnel in mine video images based on random features

  • 作者

    孙继平杜东璧

  • Author

    Sun Jjiping Du Dongbi

  • 单位

    中国矿业大学(北京)机电与信息工程学院

  • Organization
    School of Electromechanical and Information Engineering,China University of Mining and Technology ( Beiing)
  • 摘要

    为解决煤矿井下照度低、照度不均匀并且变化剧烈,缺乏颜色信息,井下人员视觉表观与背景相似,而给基于视觉的井下人员跟踪定位技术发展带来的难题,基于压缩感知理论,利用随机投影技术提出了一种简单、新颖、但有效的跟踪定位矿井视频图像中人员的方法,用非常稀疏的随机投影矩阵从图像多尺度纹理特征空间抽取目标特征构成目标模型,利用朴素贝叶斯分类器采用鉴别式方法确定跟踪目标位置,并用随机特征对目标模型进行自适应在线更新。在神东集团大柳塔煤矿采集的井下视频上试验结果表明:该算法对目标的遮挡、旋转及不均匀的环境照度和照度的剧烈变化都具有极强的鲁棒性,平均跟踪帧速率达50帧/s,满足实时性要求,可为基于视觉的井下人员定位技术提供参考。

  • Abstract
    In order to solve a low iluminance, inhomogeneous iluminance,serious varied iluminance and lack of color information in the underground mine,due to the s imilar visual apparent and background of the personnel in underground mine would bring a difficulty to the technology development of the personnel positioning in the unde rground mine based on the visual sense,the application of the random projection technology proposed a simple,novel and effective method to trace and position the person nel in the mine video images based on the compressed sensing theory. A very sparse random projection matrix was applied to extract the target features from the multi dim ension texture feature space of the images to form the target model,the Naive Bayes classification with the identification method was applied to determine the location of th e tracing target and the random features were applied to the suitable update of the target model. The operation results of the underground video collected from Daliuta Min e of Shendong Group showed that the calculation method would have high robustness to the target shielding,rotary and uneven environment iluminance and iluminance s erious variation. The average tracing frame speed could be 50 frame per s and could provide the references to the positioning technology of the underground personnel ba sed on the visual sense.
  • 关键词

    矿井人员跟踪随机投影压缩感知多尺度局部纹理特征

  • KeyWords

    mine; personnel tracing; random projection; compressed sensing; multi dimension; local texture features;

  • 基金项目(Foundation)
    国家自然科学基金重点资助项目(51134024);国家自然科学基金资助项目(51074169);国家高技术研究发展计划(863计划)资助项目(2012AA062203);
  • 相关文章
  • 相关专题
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联