• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进QGA-ELM的瓦斯涌出量预测模型
  • Title

    Prediction model of gas emission rate based on improved QGA-ELM

  • 作者

    星宁江周文铮刘雨竹

  • Author

    XING Ningjiang;ZHOU Wenzheng;LIU Yuzhu

  • 单位

    潞安集团蒲县黑龙煤业辽宁工程技术大学

  • Organization
    Lu’an Group Puxian Heilong Coal Industry
    Liaoning Technical University
  • 摘要
    针对现有的瓦斯涌出量预测方法普遍未定量分析数据自身因素影响的问题,提出一种改进量子遗传算法(IQGA)优化极限学习机(ELM)瓦斯涌出量预测模型。采用孤立森林(iForest)算法检测绝对瓦斯涌出量的概念漂移,并选择Attention机制的CNN-BiLSTM算法修正概念漂移异常值;利用相关性分析法(PCC)降维处理输入变量,确定预测模型的辅助变量;引入动态调整量子旋转角、量子交叉、量子变异及量子灾变操作获得改进量子遗传算法(IQGA),提升算法寻优能力和泛化能力,使用IQGA对ELM参数寻优。以决定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)及平均绝对百分比误差(MAPE)为指标进行评估,结果表明:IQGA-ELM模型测量误差最小,指标分别为0.985、0.018、0.026及2.56%,预测效果优于其他模型,预测精确度更高。
  • Abstract
    To investigate the problem that existing gas emission prediction methods generally do not quantitatively analyze the influence of the data itself,an improved quantum genetic algorithm (IQGA) optimized extreme learning machine (ELM) gas emission prediction model is developed. The conceptual-drifting of absolute gas emission is detected by iForest algorithm,and the outliers generated by the conceptual - drifting of absolute gas emission are corrected by combining convolutional neural network (CNN),bidirectional long - term short - time memory network ( BiLSTM),and attention mechanism. The correlation analysis (PCC) dimensionality reduction method was employed to process the input variables and determine the auxiliary variables of the prediction model. Finally,the quantum genetic algorithm ( QGA) is improved by dynamically adjusting the quantum rotation angle,quantum crossing,quantum variation and quantum catastrophe operation. Optimization and generalization ability of the algorithm were therefore enhanced. IQGA was used to optimize ELM parameters. Taking the decision coefficient (R ),mean absolute error(MAE),root mean square error(RMSE),and mean absolute percentage error(MAPE) as the indexes to carry out the evaluation,The results show that the IQGA-ELM model had the smallest measurement errors of 0. 985,0. 018,0. 026 and 2. 56%,respectively. The improved gas emission prediction model exhibit higher prediction accuracy than other models.
  • 关键词

    瓦斯涌出量概念漂移量子遗传极限学习机预测方法

  • KeyWords

    gas emission rate;conceptual-drifting;quantum inheritance;extreme learning machine;forecast method

  • 基金项目(Foundation)
    国家自然科学基金项目(51974151)
  • DOI
  • 引用格式
    星宁江,周文铮,刘雨竹.基于改进QGA-ELM的瓦斯涌出量预测模型[J].矿业安全与环保,2024,51(5):38-45.
  • Citation
    XING Ningjiang,ZHOU Wenzheng,LIU Yuzhu. Prediction model of gas emission rate based on improved QGA-ELM[J].Mining Safety & Environmental Protection,2024,51(5):38-45.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联