• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

“新一代信息技术在智能矿山中研究与应用”专题

来源:工矿自动化

专题来自于《工矿自动化》2024年11期,共12篇研究成果。

行业视野

智能化

类别

79个

关键词

56位

专家

12篇

论文

130IP

点击量

22次

下载量
  • 作者(Author): 江鹤, 程德强, 乙夫迪, 汪鹏, 崔文, 寇旗旗

    摘要:随着信息技术的飞速发展及矿山智能化转型升级的需求加大,新一代信息技术在智能矿山领域的探索与应用持续深化。简述了矿山信息化、数字化及智能化的理论体系,其覆盖从数据采集、处理到智能决策的全方位流程,为矿山转型升级奠定基础。综述了智能矿山监测监控技术、矿山大数据智能分析与决策技术、矿用设备预测性维护技术、智能矿山工业物联网技术、智能矿山AI技术、矿山数字孪生技术、矿山机器人技术、矿山5G通信技术的核心关键技术、典型应用场景和未来发展趋势。智能矿山监测与监控技术的核心构成是高精度传感器网络、物联网、大数据分析及AI。矿山大数据智能分析与决策关键技术包括数据收集与整合、数据智能分析、决策支持等。矿用设备的预测性维护技术主要包括数据采集、数据分析、故障诊断及维护决策优化。智能矿山工业物联网技术贯穿感知层到应用层,实现矿山安全管理的高效化与智能化。智能矿山AI技术在预测性维护与自我优化、人机协作与自动化控制等领域具有巨大的应用潜力。矿山数字孪生技术的核心是物联网、三维可视化与建模、AI与机器学习和高可靠通信技术。矿山机器人技术在无人驾驶、智能采矿、环境感知与监测、多机器人协同作业等领域广泛应用。矿山5G技术的核心优势是高速率、低延迟、大连接密度、高可靠性与稳定性,在多传感器融合监测、无人驾驶、5G边缘计算、虚拟现实/增强显示等领域得以应用。
    免费下载
    工矿自动化
    2024年第11期
    39
    15
  • 作者(Author): 贺耀宜, 代左朋, 杨耀, 屈世甲, 张清, 孙旭峰, 张涛

    摘要:全面感知和实时互联是智能化煤矿最基本的功能要素。现阶段采煤工作面整体环境感知能力不足,感知设备设置监测点数量有限,末端无线网络不够健全,缺乏高精度位置服务,导致矿井与采煤工作面全面感知所需数据样本量偏少,信息透明度不够,隐患识别和安全预警准确性偏低。针对该问题,以采煤工作面为应用场景,以CH4为监测对象,研究煤矿工作环境参数大样本数据感知关键技术及监测模式。通过研究无线低功耗CH4传感与自标校技术,实现在采煤工作面布置大量CH4传感器进行全面感知,解决长时间免标校维护的技术难题;通过研究传感设备对象编码与定位技术,解决大量传感设备的身份和位置识别难题;通过研究适用于矿井线性空间的高速无线数据传输技术,以及无线骨干网链路节点的路由自发现、网络故障自主发现、故障节点及时隔离和自恢复技术,解决采煤工作面布设大量CH4传感器及工作面移动带来的数据实时传输与维护问题;通过研究基于边缘计算的大样本数据连续监测模式,针对采集的大量CH4传感数据,利用空间数字云图技术,实现整个采煤工作面CH4面域连续监测和全面感知及作业现场数据分级处理。采煤工作面CH4大样本数据感知关键技术及监测模式为其他矿井环境参数的全面感知研究提供了基础技术积累。
    免费下载
    工矿自动化
    2024年第11期
    5
    0
  • 作者(Author): 胡青松, 袁淑雅, 罗渝嘉, 李世银

    摘要:矿井巷道、交通隧道等场景受火灾威胁的困扰,采用基于图像的智能火灾探测方法在火灾初期快速识别其发生位置具有重要意义。现有方法面临时间序列一致性问题,且对相机姿态变化具有高度敏感性,在复杂动态环境中的识别性能下降。针对该问题,提出一种红外(IR)和可见光(RGB)图像融合的隧道火源深度估计方法。引入自监督学习框架的位姿网络,来预测相邻帧间的位姿变化。构建两阶段训练的深度估计网络,基于UNet网络架构分别提取IR和RGB特征并进行不同尺度特征融合,确保深度估计过程平衡。引入相机高度损失,进一步提高复杂动态环境中火源探测的准确性和可靠性。在自制隧道火焰数据集上的实验结果表明,以Resnet50为骨干网络时,构建的隧道火源自监督单目深度估计网络模型的绝对值相对误差为0.102,平方相对误差为0.835,均方误差为4.491,优于主流的Lite-Mono,MonoDepth,MonoDepth2,VAD模型,且精确度阈值为1.25,1.252,1.253时整体准确度最优;该模型对近景和远景区域内物体的预测效果优于DepthAnything,MonoDepth2,Lite-Mono模型。
    免费下载
    工矿自动化
    2024年第11期
    5
    6
  • 作者(Author): 王建芳, 段思源, 潘红光, 景宁波

    摘要:基于骨架序列的行为识别模型具有速度快、算力要求低、模型简单等特点,图卷积神经网络在处理骨架序列数据时具有优势,而现有基于图卷积的矿工行为识别模型在高精度和低计算复杂度之间难以兼顾。针对该问题,提出了一种基于轻量化姿态估计网络(Lite−HRNet)和多维特征增强时空图卷积网络(MEST−GCN)的矿工行为识别模型。Lite−HRNet通过目标检测器进行人体检测,利用卷积神经网络提取图像特征,并通过区域提议网络生成锚框,对每个锚框进行分类以判断是否包含目标;区域提议网络对被判定为目标的锚框进行边界框回归,输出人体边界框,并通过非极大值抑制筛选出最优检测结果;将每个检测到的人体区域裁剪出来并输入到Lite−HRNet,生成人体关键点骨架序列。MEST−GCN在时空图卷积神经网络(ST−GCN)的基础上进行改进:去除ST−GCN中的冗余层以简化模型结构,减少模型参数量;引入多维特征融合注意力模块M2FA。生成的骨架序列经MEST−GCN的BN层批量标准化处理后,由多维特征增强图卷积模块提取矿工行为特征,经全局平均池化层和Softmax层得到行为的置信度,获得矿工行为预测结果。实验结果表明:① MEST−GCN的参数量降低至1.87 Mib;② 在以交叉主体和交叉视角为评价标准的公开数据集NTU60上,采用Lite−HRNet提取2D人体关键点坐标,基于Lite−HRNet和MEST−GCN的矿工行为识别模型的准确率分别达88.0%和92.6%;③ 在构建的矿工行为数据集上,基于Lite−HRNet和MEST−GCN的矿工行为识别模型的准确率达88.5%,视频处理速度达18.26 帧/s,可以准确且快速地识别矿工的动作类别。
    免费下载
    工矿自动化
    2024年第11期
    5
    0
  • 作者(Author): 李立宝, 袁永, 秦正寒, 李波, 闫政天, 李勇

    摘要:针对目前图像与振动信号融合的方法在煤矸识别领域应用存在特征融合困难、实时性和模型复杂度不满足实际应用要求等问题,设计了基于多头注意力(MA)的多层长短期记忆(ML−LSTM)模型MA−ML−LSTM。采用经粒子群优化(PSO)算法优化的变分模态分解(VMD)算法对振动信号进行处理,将能量、能量矩、峭度、波形因数与矩阵奇异值作为特征量,并采用一维卷积网络获取振动信息;在多分类网络ResNet−18基础上删除最后的全连接层,用于对煤矸图像进行深度特征提取;通过MA机制和ML−LSTM网络实现图像与振动双通道特征融合,强化各通道重要特征信息的表达。实验结果表明:MA−ML−LSTM模型的平均识别准确率达98.72%,相比传统单一的ResNet,MobilenetV3,1D−CNN,LSTM模型分别高4.60%,7.96%,5.37%,6.11%,相比EMD−RF,IMF−SVM,CSPNet−YOLOv7分别高4.18%,4.45%,3.46%,验证了图像特征与振动频谱多源融合驱动的煤矸识别技术的有效性。
    免费下载
    工矿自动化
    2024年第11期
    6
    0
  • 作者(Author): 罗香玉, 华颖, 王喜平, 解盘石, 伍永平

    摘要:将煤矿领域来自不同数据源的知识进行抽取,形成知识网络,借助推理技术可辅助煤矿设备故障诊断、安全风险实时预警与处置、灾害事故原因分析、应急救援方案生成及生产组织和运营管理决策支持,从而推进智慧矿山建设。梳理了知识图谱尤其是煤矿领域知识图谱的研究现状,介绍了以知识为驱动的人工智能发展历程、基于知识图谱的人工智能系统架构、知识图谱的主要类型和代表性工作,剖析了煤矿领域已有知识图谱的知识建模情况、知识图谱构建方式、知识图谱使用方式和成熟度。从实体识别、关系抽取、知识图谱融合与纠错、知识图谱推理等方面,对煤矿领域知识图谱构建与推理技术面临的挑战进行了分析,指出针对上述挑战,需研究基于跨度的实体识别方法、基于多堆叠分类器的关系抽取方法、实体的嵌入表示方法、实体间关系的一致性约束建模方法;煤矿领域知识图谱推理技术的研究需以应用为驱动,与业务场景密切结合;煤矿领域存在大量图像、视频等多模态数据,未来可构建煤矿领域多模态知识图谱,还可融入时间信息构建煤矿领域时序知识图谱。
    免费下载
    工矿自动化
    2024年第11期
    11
    0
  • 作者(Author): 张立亚, 马征, 郝博南, 李标

    摘要:相比现有的干扰抑制技术(自适应滤技术、自适应干扰对消技术),盲源分离技术能够分离混合在一起的多个信号,计算复杂度低,鲁棒性强。但盲源分离技术难以全面覆盖井下复杂多变的干扰源,同时缺乏对处理后信号成分的自动分析与评估机制,不仅限制了通信效率的提升,还可能因干扰残留而引发安全隐患。针对上述问题,提出了一种基于神经网络的矿用5G通信信号传输干扰监测抑制方法。通过分析井下主运输大巷、综采工作面和变电所等区域的干扰源特点,指出毛刺干扰及串扰信号的抑制和处理是5G抗干扰问题的关键。采用盲源分离技术初步分离矿用5G通信信号中的干扰成分,利用神经网络对分离后的信号进行特征提取及深度分析,精准识别并量化其中残留的干扰信号,一旦监测到干扰信号超出预设阈值,将自动触发新一轮的干扰抑制流程,形成迭代优化的闭环控制。实验结果表明:① 在100 MHz全带宽发送的环境中,使用矿用5G通信信号干扰监测抑制方法能够对毛刺干扰与串扰信号实现13 dB的干扰抑制增益,比使用盲源分离干扰抑制方法效果提升约117%及86%。② 矿用5G通信信号干扰监测抑制方法较盲源分离等传统干扰抑制技术,信噪比平均提升了15.56%,误码率平均降低了21.88%,能够显著提升信号质量。
    免费下载
    工矿自动化
    2024年第11期
    5
    1
  • 作者(Author): 王逸飞, 王怡雯, 许议丹, 黄晓俊

    摘要:煤矿巷道狭长且多分支的结构特征导致5G信号难以实现全面覆盖,巷道内的高路径损耗导致无线信号传输受限,因此需要对煤矿巷道基站进行选址规划。现有方法大多通过最大化视距区域的覆盖范围实现基站选址,忽略了非视距区域的基站选址问题。针对该问题,提出了一种基于射线追踪路径损耗模型的煤矿巷道基站选址方法。基于射线追踪路径损耗模型确定矩形断面巷道中基站的覆盖半径;构建了巷道数字高程模型,在此基础上确定了基站位置优化问题的目标函数,通过最小化基站数量和位置优化达到最佳覆盖率;采用遗传算法对基站位置进行优化选择,从而确定基站最优位置。仿真结果表明,使用14个基站的选址方案时,网络覆盖率为91.2%,与数值计算结果的误差仅为2.4%。煤矿巷道实测结果表明,信号接收功率略低于模拟结果,−80 dBm的信号强度可提供200 m的覆盖半径,验证了射线追踪路径损耗模型的有效性。
    免费下载
    工矿自动化
    2024年第11期
    9
    0
推荐专家
1
推荐企业
1
  • 尤洛卡精准信息工程股份有限公司是国内煤矿顶板灾害防治设备的龙头企业。公司的主导产...

    尤洛卡

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联