• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
新一代信息技术在智能矿山中的研究与应用综述
  • Title

    Overview of research and applications of new generation information technologies in intelligent mines

  • 作者

    江鹤程德强乙夫迪汪鹏崔文寇旗旗

  • Author

    JIANG He;CHENG Deqiang;YI Fudi;WANG Peng;CUI Wen;KOU Qiqi

  • 单位

    中国矿业大学信息与控制工程学院计算机科学与技术学院

  • Organization
    School of Information and Control Engineering, China University of Mining and Technology, Xuzhou
    School of Computer Science and Technology, China University of Mining and Technology, Xuzhou
  • 摘要

    随着信息技术的飞速发展及矿山智能化转型升级的需求加大,新一代信息技术在智能矿山领域的探索与应用持续深化。简述了矿山信息化、数字化及智能化的理论体系,其覆盖从数据采集、处理到智能决策的全方位流程,为矿山转型升级奠定基础。综述了智能矿山监测监控技术、矿山大数据智能分析与决策技术、矿用设备预测性维护技术、智能矿山工业物联网技术、智能矿山AI技术、矿山数字孪生技术、矿山机器人技术、矿山5G通信技术的核心关键技术、典型应用场景和未来发展趋势。智能矿山监测与监控技术的核心构成是高精度传感器网络、物联网、大数据分析及AI。矿山大数据智能分析与决策关键技术包括数据收集与整合、数据智能分析、决策支持等。矿用设备的预测性维护技术主要包括数据采集、数据分析、故障诊断及维护决策优化。智能矿山工业物联网技术贯穿感知层到应用层,实现矿山安全管理的高效化与智能化。智能矿山AI技术在预测性维护与自我优化、人机协作与自动化控制等领域具有巨大的应用潜力。矿山数字孪生技术的核心是物联网、三维可视化与建模、AI与机器学习和高可靠通信技术。矿山机器人技术在无人驾驶、智能采矿、环境感知与监测、多机器人协同作业等领域广泛应用。矿山5G技术的核心优势是高速率、低延迟、大连接密度、高可靠性与稳定性,在多传感器融合监测、无人驾驶、5G边缘计算、虚拟现实/增强显示等领域得以应用。

  • Abstract

    With the rapid development of information technology and the increasing demand for the intelligent transformation and upgrading of mining operations, the exploration and application of new generation information technologies in the field of intelligent mining have continued to deepen. This paper briefly describes the theoretical system of mine informatization, digitization, and intelligence, which covers the entire process from data collection and processing to intelligent decision-making, laying the foundation for the transformation and upgrading of mines. It reviews the core technologies, typical application scenarios, and future development trends of intelligent mine monitoring and control technologies, big data intelligent analysis and decision-making technologies, predictive maintenance technologies for mining equipment, industrial IoT technologies in intelligent mines, AI technologies in intelligent mining, digital twin technologies in mining, robotics in mining, and 5G communication technologies in mining. The core components of intelligent mine monitoring and control technology are high-precision sensor networks, the Internet of Things (IoT), big data analysis, and AI. Key technologies in big data intelligent analysis and decision-making for mines include data collection and integration, intelligent data analysis, and decision support. Predictive maintenance technologies for mining equipment mainly involve data collection, data analysis, fault diagnosis, and maintenance decision optimization. Industrial IoT technologies in intelligent mines span from the sensing layer to the application layer, achieving efficient and intelligent mine safety management. AI technologies in intelligent mines hold great application potential in predictive maintenance, self-optimization, human-machine collaboration, and automated control. The core of digital twin technology in mining includes IoT, 3D visualization and modeling, AI and machine learning, and high-reliability communication technologies. Robotics technology in mining is widely applied in fields such as autonomous driving, intelligent mining, environmental sensing and monitoring, and multi-robot collaborative operations. The core advantages of 5G technology in mining are high speed, low latency, large connection density, high reliability, and stability, which are applied in fields like multi-sensor fusion monitoring, autonomous driving, 5G edge computing, and virtual reality/augmented display.

  • 关键词

    智能矿山新一代信息技术大数据分析工业物联网人工智能数字孪生机器人5G通信

  • KeyWords

    intelligent mines;new generation information technologies;big data analysis;industrial Internet of Things;artificial intelligence;digital twin;robotics;5G communication

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52304182、52204177);安徽理工大学矿山精细探测与信息处理技术创新基地开放基金项目(2023MPIM03);国家重点研发计划项目 (2021YFC2902702,2023YFC2907604)。
  • DOI
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 5G云网融合智慧矿山部署方案

    图(11) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联