• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
VEC中基于DRL的“端-多边-云”协作计算卸载算法
  • Title

    An “end-multi-edge-cloud” cooperative computation offloading algorithm based onDRL in VEC

  • 作者

    彭维平杨玉莹王戈宋成阎俊豪

  • Author

    PENG Weiping;YANG Yuying;WANG Ge;SONG Cheng;YAN Junhao

  • 单位

    河南理工大学计算机科学与技术学院

  • Organization
    School of Computer Science and Technology,Henan Polytechnic University
  • 摘要

    目的目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperativecomputationoffloadingandresourcealloca‐tionalgorithmbasedonDRL,DRL-CCORA)。首先,将路边停放车辆的算力构建成停车边缘服务器(parkingedgeserver,PES),联合边缘节点为车辆任务提供计算服务,减轻边缘节点的负载;其次,将计算卸载与资源分配问题转化为马尔可夫决策过程模型,综合时延、能耗和服务质量构建奖励函数,并根据任务需要的计算资源、任务的最大容忍时延以及车辆到PES的距离对计算任务进行预分类处理,缩减问题的规模;最后,利用双深度Q网络(doubledeepqnetwork,DDQN)算法获得计算卸载和资源分配的最优策略。结果结果结果表明,相较于对比算法,所提算法的用户总服务质量提高了6.25%,任务的完成率提高了10.26%,任务计算的时延和能耗分别降低了18.8%、5.26%。结论结论所提算法优化了边缘节点的负载,降低了任务完成的时延和能耗,提高了用户的服务质量。

  • Abstract

    Objectives To address the problems of low service quality of users and insufficient resources of edge node in vehicular edge computing(VEC), Methods combined vehicular edge computing with parking edge computing technology,an "end-multi-edge-cloud" cooperative computation offloading model was pro‐posed,and a cooperative computation offloading and resource allocation algorithm based on DRL(DRL-CCORA) was designed.Firstly,the computing power of roadside parking vehicles were constructed into park‐ing edge server(PES),which jointly provided computing services for vehicle tasks with edge node,and re‐duced the load of edge node.Secondly,the problem of computation offloading and resource allocation was transformed into a Markov Decision Process model,and a reward function was constructed based on time de‐lay,energy consumption and service quality.And the computing tasks were pre-classified according to the computing resources required by the task and the maximum allowable delay of the task and the distance from the vehicle to PES,the scale of the problem was reduced.Finally,the double deep Q network(DDQN) algorithm was used to obtain the optimal strategy of computation offloading and resource allocation. Results The results showed that,compared to the contrasting algorithm,the proposed algorithm improved the overall user service quality by more than 6.25%,improved the task completion rate by more than 10.26%,and re‐duced the time delay and energy consumption of task computing by more than 18.8% and 5.26%,respec‐tively. Conclusions The proposed algorithm optimized the load of the edge node,reduced the time delay and energy consumption of task completion,and improved the service quality of users.

  • 关键词

    车载边缘计算停车边缘计算计算卸载资源分配双深度Q网络

  • KeyWords

    vehicular edge computing;parking edge computing;computation offloading;resource allocation;double deep Q network

  • 基金项目(Foundation)
    国家重点研发计划项目(2018YFC0604502);国家自然科学基金资助项目(61872126);河南省高校青年骨干教师计划项目(2019GGJS061)
  • DOI
  • 引用格式
    彭维平,杨玉莹,王戈,等 .VEC 中基于 DRL 的“端-多边-云”协作计算卸载算法[J]. 河南理工大学学报(自然科学版),2024,43(6):156‐163.
  • Citation
    PENG W P,YANG Y Y,WANG G,et al. An “end-multi-edge-cloud” cooperative computation offloading algorithm based on DRL in VEC[J].Journal of Henan Polytechnic University(Natural Science),2024,43(6):156-163.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联