• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于1DCNN-BiLSTM-CBAM的煤巷顶板岩层地质特征随钻智能识别方法
  • Title

    An intelligent identifying-while-drilling method for geological features of roof strata in coal roadways based on a 1DCNN-BiLSTM-CBAM model

  • 作者

    雷志勇王家文凡东鲁飞飞陈卫明

  • Author

    LEI Zhiyong;WANG Jiawen;FAN Dong;LU Feifei;CHEN Weiming

  • 单位

    国家能源集团陕西神延煤炭有限责任公司中国地质大学(武汉) 工程学院中煤科工西安研究院(集团)有限公司陕西省煤矿水害防治技术重点实验室中国地质大学(武汉) 自然灾害风险防控与应急管理实验室

  • Organization
    Shaanxi Shenyan Coal Co., Ltd., CHN Energy
    Faculty of Engineering, China University of Geosciences
    CCTEG Xi’an Research Institute (Group) Co., Ltd.
    Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard
    Laboratory for Natural Disaster Risk Prevention and Emergency Management, China University of Geosciences
  • 摘要
    目的

    煤巷顶板事故多发生于原生裂隙发育带和岩层破碎带等潜在垮落区,准确、及时掌握顶板岩层地质特征并优化其支护方案及参数是预防顶板事故的重要途径。目前关于巷道顶板岩层地质特征识别方法的相关研究存在识别速度慢、效率低、成本高等问题,难以满足煤矿安全、高效和智能化开采的需求。

    方法

    提出了一种基于1DCNN(一维卷积神经网络)、BiLSTM(双向长短期记忆网络)和CBAM(卷积块注意力模块)相结合的神经网络模型,建立了随钻振动加速度信号与顶板岩层地质特征的对应关系,通过钻进试验,采集完整岩石、破碎岩石和含裂隙岩石样本的随钻振动加速度信号数据,并将此信号作为训练样本,在此基础上建立了不同岩石样本与其随钻振动信号之间的对应关系,并采用准确率、精确率、召回率和F1值4项分类指标评估各模型的性能。

    结果和结论

    研究表明:(1)建立的1DCNN-BiLSTM-CBAM模型实现了端到端的岩层地质特征智能识别,简化识别流程,提高识别效率。(2) SVM(支持向量机)、1DCNN、BiLSTM以及1DCNN-BiLSTM-CBAM模型训练结果表明,1DCNN-BiLSTM-CBAM模型的平均准确率、精确率、召回率和F1值分别达到99.22%、99.26%、99.21%和99.23%,均优于其他对比模型。(3)实验验证该模型在煤巷顶板岩层地质特征的分类识别中是有效的,且具有良好的分类识别性能,能够满足巷道顶板岩层地质特征实时智能的识别要求。研究为识别煤巷潜在垮落区以及制定顶板支护方案提供了有力的技术支持,提供了一种煤矿巷道顶板随钻探测的高效识别方法,对提升煤矿巷道安全保障技术具有重要的借鉴意义。

  • Abstract
    Objective

    Most roof accidents in coal roadways occur in potential caving zones such as primary fissure-bearing zones and rock fracture zones. A significant approach to preventing roof accidents is to understand the geological features of roof strata in an accurate and timely manner and optimize support schemes and parameters of roofs. However, current methods for identifying the geological features of roof strata in roadways suffer from issues such as slow identification speeds, low efficiency, and high costs, thus failing to meet the demand for safe, efficient, and intelligent coal mining.

    Methods

    This study proposed a neural network model based on the 1D convolutional neural network (1DCNN), the bidirectional long short-term memory (BiLSTM), and the convolutional block attention module (CBAM) (also referred to as the 1DCNN-BiLSTM-CBAM model). The correspondence between the acceleration signals of vibrations while drilling and the geological features of roof strata was established. Then, the acceleration signals of vibrations while drilling were acquired from intact, fractured, and fissured rock samples through drilling tests. These signals were used as training samples. Accordingly, the correspondence between different rock samples and the signals of vibrations while drilling was determined. Finally, the performance of various models was assessed using four classification indices: precision, recall, and F1-score.

    Results and Conclusions

    The results indicate that the established 1DCNN-BiLSTM-CBAM model allowed for the end-to-end intelligent identification of geological features of rock layers, featuring a simplified identification process and enhanced identification efficiency. The training results of various models revealed that the 1DCNN-BiLSTM-CBAM model exhibited average accuracy, precision, recall, and F1-score of 99.22%, 99.26%, 99.21%, and 99.23%, respectively, outperforming the support vector machine (SVM), 1DCNN, and BiLSTM models. The experimental verification demonstrates that the 1DCNN-BiLSTM-CBAM model is effective in classifying and identifying the geological features of roof strata in coal roadways, with high classification and identification performance. Therefore, this model can meet the demand for real-time intelligent identification of the geological features of roof strata in roadways. This study presents an efficient identifying-while-drilling method for roadway roofs in coal mines, providing strong technical support for identifying potential caving zones in coal roadways and formulating roof support schemes. This study can serve as a reference for improving the safety guarantee technology for roadways in coal mines.

  • 关键词

    煤矿事故深度学习随钻振动信号时间序列分类地质特征识别煤巷顶板智能识别

  • KeyWords

    coal mine accident;deep learning;signals of vibrations while drilling;time series classification;geological feature identification;roof of a coal roadway;intelligent identification

  • 基金项目(Foundation)
    国家重点研发计划项目(2022YFC3005900);陕西省煤矿水害防治技术重点实验室开放基金项目(2021SKMS07);中央高校基本科研业务费专项项目(CUG2642022006)
  • DOI
  • 相关文章
  • 图表
    •  
    •  
    • 1DCNN深度网络架构

    图(10) / 表(3)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联