• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于锶同位素的潘二煤矿相邻灰岩含水层突水水源判识模型研究
  • Title

    Study on identification model of water inrush source from adjacent limestone aquifer in Paner Coal Mine based on strontium isotope

  • 作者

    吴盾李波魏超吴坚陆建伟

  • Author

    WU Dun;LI Bo;WEI Chao;WU Jian;LU Jianwei

  • 单位

    陕西省煤矿水害防治技术重点实验室安徽建筑大学 土木工程学院中国科学技术大学 地球和空间科学学院安徽省煤田地质局勘查研究院

  • Organization
    Shaanxi Province Key Laboratory of Coal Mine Water Disaster Prevention and Control Technology
    College of Civil Engineering, Anhui Jianzhu University
    School of Earth and Space Sciences, University of Science and Technology of China
    Anhui Province Coalfield Geology Bureau Exploration Research Institute
  • 摘要

    矿井突水是采矿生产过程中威胁最大的地质灾害之一,快速有效地判别突水水源是预防矿井水害的关键所在。通过分析潘二煤矿含水层的水化学性质,开展了相邻水岩水锶同位素的测试与分析,选取87Sr/86Sr、Ca2+、Na++K+、Mg2+、HCO3、SO42−、Cl 7个判别指标,结合主成分分析与Fisher理论、主成分分析与距离判别理论、主成分分析与BP神经网络,分别建立基于锶同位素的混合水源判别模型(Sr-F模型、Sr-D模型、Sr-B模型),利用模型对未知水样进行判识。结果表明:基于锶同位素的Sr-B判识模型的判识效果最好,其准确率达到95%;基于主成分分析与BP神经网络突水水源判别模型能够有效地提高突水水源识别精度,能准确地判识相邻灰岩含水层突水水源,为矿井安全生产提供保障。

  • Abstract

    Mine sudden water is one of the most threatening geological hazards during mining production, so rapid and effective identification of sudden water sources is the key to prevent mine water damage. In this study, we analyzed the water chemistry of Panji Coal Mine aquifer and carried out the testing and analysis of strontium isotopes of water in the adjacent water rock, selected seven discriminatory indexes: 87Sr/86Sr, Ca2+, Na++K+, Mg2+, HCO3, SO42−, Cl, combined with principal component analysis and Fisher’s theory, principal component analysis and distance discriminatory theory, principal component analysis and BP Neural network, to establish the discriminatory models of mixed water sources based on strontium isotopes (Sr-F model, Sr-D model, Sr-B model), and use the models to discriminate unknown water samples. The results show that the Sr-B model based on strontium isotopes has the best discriminative effect, and its accuracy reaches 95%. Therefore, the identification model of water inrush sources based on principal component analysis and BP neural network can effectively improve the identification accuracy of water inrush sources, accurately identify water inrush sources in adjacent limestone aquifers, and provide guarantee for mine safety production.

  • 关键词

    锶同位素相邻含水层水源判别多模型矿井突水

  • KeyWords

    strontium isotope;adjacent aquifers;water source discrimination;multiple models;mine water inrush

  • 基金项目(Foundation)
    陕西省煤矿水害防治技术重点实验室开放基金资助项目(2021SKMS06);安徽省深地钻探工程研究中心开放基金资助项目(2022AHSD03)
  • DOI
  • 引用格式
    吴盾,李波,魏超,等. 基于锶同位素的潘二煤矿相邻灰岩含水层突水水源判识模型研究[J]. 煤矿安全,2024,55(5):204−212.
  • Citation
    WU Dun, LI Bo, WEI Chao, et al. Study on identification model of water inrush source from adjacent limestone aquifer in Paner Coal Mine based on strontium isotope[J]. Safety in Coal Mines, 2024, 55(5): 204−212.
  • 图表
    •  
    •  
    • 水样品水化学特征的Piper三线图

    图(3) / 表(4)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联