Prediction of TBM tunneling parameters and rockburst grade based on CNN-LSTM model
满轲武立文刘晓丽宋志飞李可娜
MAN Ke;WU Liwen;LIU Xiaoli;SONG Zhifei;LI Kena
北方工业大学 土木工程学院清华大学 水沙科学与水利水电工程国家重点实验室
为了提高交通水利和深部煤矿工程中的TBM智能化施工和灾害预测的能力,提出了一种结合卷积神经网络(CNN)和长短时记忆神经网络(LSTM)优势的CNN-LSTM模型,依托“引汉济渭”工程,预测TBM隧道稳定段掘进参数和岩爆等级。此外,对TBM数据进行清洗和预处理,根据桩号将TBM数据、地质参数和岩爆等级匹配,基于灰色关联分析筛选出合理的预测指标,合理选择CNN-LSTM模型的超参数以获得较好的预测结果,并与其他模型的预测结果进行对比分析。研究结果表明:对于TBM隧道稳定阶段的掘进参数推力
In order to improve the intelligent construction and disaster prediction capabilities of TBM in traffic water conservancy and deep coal mine engineering, the CNN-LSTM model combining the advantages of convolutional neural network (CNN) and long short-term memory neural network (LSTM) was proposed, and the tunnelling parameters in the stabilization stage of TBM tunnel and rockburst grade were predicted based on the Hanjiang River-Weihe River Water Conveyance Project. In addition, the TBM data was cleaned and preprocessed, the TBM data, geological parameters and rockburst grade were matched according to the station number, reasonable prediction indicators were screened out based on grey relation analysis. And the hyperparameters of the CNN-LSTM model were reasonably selected to obtain better prediction results, and the prediction results of other models were compared and analyzed. The research findings indicate that for the tunneling parameters of thrust (
TBM隧道掘进参数岩爆等级CNN-LSTM模型灰色关联分析
TBM tunnel;tunnelling parameters;rockburst grade;CNN-LSTM model;grey relation analysis
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会