• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
水分对无烟煤破碎行为和研磨能耗的影响
  • Title

    Effect of moisture on anthracite crushing behavior and grinding energy consumption

  • 作者

    李召辉谢卫宁林生茂姜海迪张峰彬王帅谭之海何亚群孙小路

  • Author

    LI Zhaohui;XIE Weining;LIN Shengmao;JIANG Haidi;ZHANG Fengbin;WANG Shuai;TAN Zhihai;HE Yaqun;SUN Xiaolu

  • 单位

    中国矿业大学 化工学院中国矿业大学 现代分析与计算中心湖南中天青鼎工程科技股份有限公司内蒙古工业大学 资源与环境工程学院

  • Organization
    School of Chemical Engineering, China University of Mining and Technology
    Advanced Analysis and computation Center, China University of Mining and Technology
    Hunan Zhongtian Qingding Engineering Technology Co., LTD
    School of Resources and Environmental Engineering, Inner Mongolia University of Technology
  • 摘要

    煤中水分赋存形态和含量的变化会改变煤炭物理特性和孔隙结构,进而影响其破碎过程。为研究煤炭所含水分对其破碎行为的影响,以无烟煤为研究对象,利用加装功率测量装置的哈氏可磨仪模拟中速磨煤机内的破碎环境,对不同含水量煤样开展多时间批次的单独与混合破碎试验,并研究水分对煤炭破碎速率、煤粉细度及研磨能耗的影响。试验结果表明:相比于原始煤样,均化浸泡煤样单独破碎时初始粒级物料破碎速率因含水量的增加明显减小,其可磨性指数随水分增加先减小后增大,煤粉细度t10与含水量呈正相关关系。干、湿煤样混合破碎时13.34%含水量样品破碎速率和细粒级物料生成速率远大于相同水分的均化浸泡煤样,且其可磨性指数大于原煤;其他含水量的混配煤样可磨性指数略小于均化浸泡煤样,此差异随含水量增加而变大,而破碎速率和细粒级物料产率与均化浸泡煤样差别较小。经典能量—粒度关系模型可用来表征不同水分梯度样品单独和混合破碎过程,内、外水分不同程度降低了无烟煤抵抗破碎的能力,单独破碎时含水量增加可显著提高能量效率;将含水量参数引入能耗模型,实现对多梯度水分煤样破碎过程的表征。通过探究煤中含水量对煤炭破碎能耗的影响机理,揭示煤炭破碎过程中能量损失方式并为优化煤炭破碎工艺、降低能耗提供理论指导。

  • Abstract

    The change of water occurrence form and content in coal will change the physical characteristics and pore structure of coal, and then affect its crushing process.In order to study the effect of moisture contained in coal on on the crushing behavior of coal particles,anthracite coal was used as the research object. A Hastelloy grinding equipped with a power measuring device was applied to simulate the crushing environment in a medium-speed coal mill. The individual and mixed crushing experiments were carried out in multi-time batches of coal samples with different water content. Thus, the effects of water occurrence on coal crushing rate, pulverized coal fineness, and grinding energy consumption were studied. The experimental results showed that compared with the original coal samples, the initial particle size material crushing rate of homogenized soaked coal samples decreases significantly due to the increase of water content, its grindability index first decreased and then increased with increasing the water content when the homogenized immersed coal sample was crushed separately, and the fineness of pulverized coal t10 was positively correlated with water content. When dry and wet coal samples were mixed and crushed, the crushing rate and fine-grained material generation rate of 13.34% moisture content samples were much higher than that of homogenized soaked coal samples with the same moisture content, and their its grindability index was larger than that of the original coal; The grindability index of the blended coal samples with other moisture contents was slightly smaller than that of the homogenized soaked coal samples, and this difference became larger with the increase of moisture content, while the crushing rate and the yield of fine-grained materials differed less from that of the homogenized impregnated coal samples. Also, the result indicated that the classical energy-particle size relationship model may be used to characterize the individual and mixed crushing processes of samples with different moisture gradients. The internal and external moisture reduced the ability of anthracite to resist crushing to varying degrees, and increasing the water content during separate crushing improved the energy efficiency significantly. So, the water content parameters were introduced into the energy consumption model to characterize the crushing process of various moisture coal samples. By exploring the influence mechanism of water content in coal on energy consumption of coal crushing, it reveals the way of energy loss in the process of coal crushing and provides theoretical guidance for optimizing coal crushing process and reducing energy consumption.

  • 关键词

    无烟煤破碎速率可磨性指数煤粉细度研磨能耗

  • KeyWords

    anthracite;crushing rate;grindability index;pulverized coal fineness;grinding energy consumption

  • 基金项目(Foundation)
    国家自然科学基金青年项目资助项目(51904295);长沙市第三批紧缺急需人才集聚工程资助项目(D2021049400);内蒙古自治区自然科学基金项目资助项目(2021MS05055 )
  • DOI
  • 引用格式
    李召辉,谢卫宁,林生茂,等. 水分对无烟煤破碎行为和研磨能耗的影响[J]. 煤炭科学技术,2024,52(6):261−269.
  • Citation
    LI Zhaohui,XIE Weining,LIN Shengmao,et al. Effect of moisture on anthracite crushing behavior and grinding energy consumption[J]. Coal Science and Technology,2024,52(6):261−269.
  • 相关文章
  • 图表

    Table1

    煤样工业分析
    煤样 Mad/% Aad/% Vad/% FCad/%
    无烟煤 3.87 3.69 16.05 76.38

    Table2

    含水量测试
    加水比例/% 外水含量/% 内水含量/% 全水分/%
    5.00 1.55 3.60 9.34
    10.00 1.77 3.44 13.34
    15.00 2.80 3.36 17.01
    15.00 2.27 3.28 17.21
    20.00 7.87 2.79 20.20
    25.00 11.50 3.04 23.83
    30.00 11.90 2.66 26.58
    35.00 16.74 2.92 29.29
    40.00 18.77 2.89 31.90
    45.00 23.48 3.49 34.26
    45.00 21.69 3.19 34.16
    50.00 26.56 3.22 36.44

    Table3

    混合破碎样品的配制
    均化浸泡煤样
    (含水量)质量/g
    原煤(含水量)
    质量/g
    配置样品
    全水分/%
    配置样品
    质量/g
    (20.20%)27.58 (4.90%)22.42 13.34 50
    (26.58%)35.29 (4.90%)14.71 20.20 50
    (31.90%)40.13 (4.90%)9.87 26.58 50
    (36.44%)42.82 (4.90%)7.18 31.90 50

    Table4

    单独及混合破碎平行试验
    样品 含水量/% 破碎时间/s 不同粒度下产物含量/%
    −0.074 mm −0.09 mm 0.09~0.63 mm +0.63 mm
    原始煤样 4.9 180 10.07 12.55 55.11 32.34
    9.94 12.50 56.31 31.19
    烘干煤样 0 180 10.90 13.61 57.72 28.66
    10.23 12.82 56.15 31.02
    均化浸泡煤样 13.34 180 7.38 8.82 23.97 67.21
    13.41 16.35 46.8 36.85
    20.20 20 9.99 12.71 23.2 64.09
    13.54 16.81 46.64 36.55
    26.58 90 13.96 16.95 48.33 34.71
    6.87 7.96 19.91 72.13
    31.90 30 3.06 3.68 14.76 81.55
    3.54 4.21 14.98 80.81
    混合煤样 13.34 90 7.26 8.80 32.93 58.27
    7.18 8.74 33.80 57.46
    20.20 20 2.47 3.01 15.68 81.31
    2.28 2.82 16.11 81.07
    26.58 60 4.89 5.84 18.84 75.32
    4.74 5.62 18.15 76.23
    31.90 180 12.29 14.23 23.08 62.70
    12.33 14.28 23.20 62.52

    Table5

    各样品的可磨性指数HGI
    煤样类型 不同含水量煤样的HGI
    13.34% 20.20% 26.58% 31.90%
    均化浸泡煤样 34.76 41.14 56.10 61.44
    混配煤样 55 40.1 52.85 56.17
    混配煤样加权值 44.06 53.61 58.72
    注:烘干煤样HGI为50.91;原始煤样HGI为47.65。

    Table6

    加权水分13.34%的不同干湿质量比混配煤样及混煤中相对应的均化浸泡煤样破碎产物粒度分布对比
    样品组成 不同粒度产物含量/%
    −0.074 mm −0.09 mm 0.09~0.63 mm +0.63 mm
    20.20%煤样混配 13.41 16.35 46.80 36.85
    23.92%煤样混配 13.54 16.81 46.64 36.55
    26.58%煤样混配 13.96 16.95 48.33 34.71
    20.20%均化浸泡样品 7.26 9.58 21.81 68.61
    23.92%均化浸泡样品 9.99 12.71 23.20 64.09
    26.58%均化浸泡样品 12.45 15.28 27.42 57.30
    原始煤样 13.35 16.51 56.61 26.88
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联