• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
浅埋薄基岩顶板采动突水溃砂固流耦合相似模拟试验研究
  • Title

    Study on solid-fluid coupling similarity simulation test of water-sand inrush during mining of shallow buried thin bedrock roof

  • 作者

    张贵彬王荣强马俊鹏吕文茂张文泉王海龙

  • Author

    ZHANG Guibin;WANG Rongqiang;MA Junpeng;LYU Wenmao;ZHANG Wenquan;WANG Hailong

  • 单位

    临沂大学 土木工程与建筑学院兖矿能源集团股份有限公司山东科技大学 能源与矿业工程学院

  • Organization
    School of Civil Engineering and Architecture, Linyi University
    Yan Kuang Energy Group Company Limited
    College of Energy and Mining Engineering, Shandong University of Science and Technology
  • 摘要

    突水溃砂作为一种新型的矿井地质灾害,具有隐蔽、突发、难监测、破坏强等特点,因此,探究覆岩采动劣化特征及突水溃砂致灾机理对松散层水害防控具有指导意义。首先,通过相似材料配比与测试试验,研究了不同材料配比对材料强度、渗透特性的影响机制,并研制出一种适宜于模拟松软岩层的新型固流耦合相似材料;然后,借助采动煤层顶板涌水溃砂灾害模拟系统,进行了浅埋薄基岩、中厚基岩的单一含水结构盖层以及薄基岩含隔双层结构盖层条件下开采的相似模拟试验,分析了不同地层结构的采动裂缝空间劣化−贯通及水砂起动、运移、涌溃灾变特征,揭示了浅埋薄基岩采动突水溃砂致灾机理。试验结果表明:新型固流耦合相似材料兼具耐水、抗崩解、抗软化、低渗透、低强度、低塑性的特性,且渗透系数随碳酸钙含量的增加呈负指数衰减,单轴抗压强度呈现二次多项式增长的特点;初次来压和第一次周期来压阶段是浅埋薄基岩采动覆岩劣化诱发突水溃砂的高发期,采动裂缝平面呈“OX”分布,随基岩与松散层底部黏土层的厚度增加,覆岩由拉剪破坏逐渐转变为拉张破坏,裂缝形态由“垂向直通形”转变为“倒楔形多层交错叠加组合”,裂缝开度减小,通畅度变差,可降低诱发突水溃砂风险几率与危害程度;通道开度(宽度)与砂体粒径的相对关系(简称“裂粒比”)以及通道通畅度是决定突水溃砂发生与否及致灾程度的关键。

  • Abstract

    As a new type of mine geological disaster, water-sand inrush has the characteristics of concealment, sudden onset, difficulty in monitoring, and strong destruction. Therefore, exploring the characteristics of overlying rock mining degradation and the disaster mechanism of water-sand inrush has guiding significance for the prevention and control of loose layer water hazard. Firstly, the influence mechanism of different material proportioning on the strength and permeability characteristics of similar materials is studied through similar material proportioning and testing experiments, and a new solid-fluid coupling similar material suitable for simulating soft rock layers is developed. Then, by using the test system for water-sand inrush, similar simulation tests are conducted for mining under the condition of a single water-bearing structure capping thin and medium thick bedrock, and a double layered structure capping thin bedrock. The characteristics of mining crack and the disaster mechanism of water-sand inrush under the above strata structure conditions are analyzed. The test results show that the new solid-fluid coupling similar material has the characteristics of water resistance, anti disintegration, anti softening, low permeability, low strength, and low plasticity, and the permeability coefficient decreases exponentially with the increase of calcium carbonate content, while the uniaxial compressive strength exhibits a quadratic polynomial growth characteristic. The first weighting stage and the first periodic weighting stage of mining shallow and thin bedrock are easy to induce water-sand inrush. The mining cracks present an “OX” distribution on the plane, and as the thickness of bedrock and the clay layer at the bottom of the loose layer increases, the bedrock gradually transforms from tensile shear failure to tensile failure, and the morphology of the cracks also changes. At the same time, the opening and smoothness of cracks are reduced, which can reduce the inducing risk and harm degree of water-sand inrush. The ratio of crack opening to sand particle size , as well as the smoothness of crack, are the key factors determining the occurrence and severity of water-sand inrush.

  • 关键词

    薄基岩采动裂缝地层结构突水溃砂相似材料模拟试验

  • KeyWords

    thin bedrock;mining induced cracks;strata structure;water- sand inrush;similar materials;simulation test

  • 基金项目(Foundation)
    山东省自然科学基金青年资助项目(ZR2021QD091);山东省高等学校“青创团队计划”团队资助项目(2022KJ112)
  • DOI
  • 引用格式
    张贵彬,王荣强,马俊鹏,等. 浅埋薄基岩顶板采动突水溃砂固流耦合相似模拟试验研究[J]. 煤炭科学技术,2024,52(6):165−175.
  • Citation
    ZHANG Guibin,WANG Rongqiang,MA Junpeng,et al. Study on solid-fluid coupling similarity simulation test of water-sand inrush during mining of shallow buried thin bedrock roof[J]. Coal Science and Technology,2024,52(6):165−175.
  • 图表

    Table1

    材料配比及参数测试结果
    试样
    编号
    材料配比 高度/mm 质量/g 密度/( kg·m−3) 单轴抗压强度/kPa 渗透系数/(10−4cm·s−1)
    沙子∶石蜡∶凡士林∶液压油∶碳酸钙
    A-1 40∶0.8∶1∶1∶0 101.5 319 1600.6 85.35 4.52
    A-2 102.1 321 1601.2 89.24 4.45
    A-3 105.0 330 1600.6 85.02 4.50
    平均 1600.8 86.54 4.49
    B-1 40∶0.8∶1∶1∶1 101.7 325 1627.5 98.90 0.87
    B-2 107.3 347 1647.0 94.62 0.75
    B-3 106.9 342 1629.4 103.33 0.63
    平均 1634.6 98.95 0.75
    C-1 40∶0.8∶1∶1∶2 106.2 350 1678.5 136.74 0.13
    C-2 104.2 338 1652.0 144.92 0.10
    C-3 108.7 353 1653.9 142.80 0.25
    平均 1661.4 141.49 0.16
    D-1 40∶0.8∶1∶1∶3 107.4 362 1716.6 205.74 0.035
    D-2 107.9 358 1689.8 196.32 0.016
    D-3 105.3 354 1712.2 199.53 0.018
    平均 1706.2 200.53 0.023
    E-1 40∶0.8∶1∶1∶4 109.4 376 1750.4 357.23 0.0074
    E-2 106.2 364 1745.6 381.26 0.0097
    E-3 110.6 380 1749.8 370.67 0.0075
    平均 1748.6 369.72 0.0082
    F-1 40∶0.8∶1∶1∶5 107.8 376 1776.4 474.60 0.0041
    F-2 110.2 388 1793.2 492.30 0.0038
    F-3 112.5 394 1783.7 490.01 0.0080
    平均 1784.4 485.64 0.0053
    G-1 40∶0.4∶1∶1∶3 104.6 346 1684.7 56.12 0.078
    G-2 103.1 340 1679.5 64.77 0.054
    G-3 107.8 358 1691.4 51.49 0.060
    平均 1685.2 57.46 0.064
    H-1 40∶0.5∶1∶1∶3 105.8 350 1684.8 75.56 0.051
    H-2 107.5 355 1681.9 78.83 0.044
    H-3 104.9 343 1665.3 87.23 0.040
    平均 1677.3 80.54 0.045
    I-1 40∶0.6∶1∶1∶3 112.4 369 1671.9 117.11 0.027
    I-2 108.3 359 1688.2 107.17 0.043
    I-3 107.2 351 1667.5 112.35 0.035
    平均 1675.9 112.21 0.035
    J-1 40∶0.7∶1∶1∶3 111.7 372 1677.7 166.23 0.035
    J-2 107.7 357 1672.3 137.98 0.016
    J-3 109.2 360 1676.2 157.43 0.018
    平均 1675.4 153.88 0.027

    Table2

    模拟方案的地层结构及相似材料配比情况
    方案 地层编号 岩性 原地质模型 相似模型
    厚度/m 抗压强度/MPa 天然密度/
    (g·cm−3)
    厚度/cm 各岩层单层铺设
    厚度/cm
    铺设
    次数
    模型累计
    铺设高度/cm
    配比(河砂∶石蜡∶凡士林∶
    液压油∶碳酸钙)
    方案一 1 砂层 50 2.22 20 47 选用天然彩砂
    2 泥岩 10 18.8 2.46 4 2.00 2 27 40:0.4:1:1:3
    3 细砂岩 10 22.4 2.51 4 2.00 2 23 40:0.43:1:1:3
    4 中砂岩 7.5 32.2 2.46 3 3.00 1 19 40:0.5:1:1:3
    5 砂质泥岩 5 36.7 2.53 2 2.00 1 16 40:0.54:1:1:3
    6 细砂岩 7.5 46.9 2.52 3 1.50 2 14 40:0.62:1:1:3
    7 泥岩 5 30.1 2.54 2 2.00 1 11 40:0. 5:1:1:3
    8 中砂岩 7.5 40.5 2.62 3 3.00 1 9 40:0.6:1:1:3
    9 粉细砂岩 10 35.7 2.60 4 2.00 2 6 40:0.53:1:1:3
    10 泥岩 5 26.5 2.51 2 2.00 1 2 40:0.46:1:1:3
    11 煤层 7.5 10.4 1.43 3 煤层模拟抽板
    方案二 1 砂层 50 2.22 20 33 选用天然彩砂
    2 细砂岩 7.5 18.4 2.51 3 3.00 1 12 40:0.4:1:1:3
    3 中砂岩 2.5 36.7 2.53 1 1.00 1 9 40:0.54:1:1:3
    4 细砂岩 7.5 46.9 2.52 3 3.00 1 8 40:0.62:1:1:3
    5 泥岩 7.5 30.1 2.54 3 3.00 1 5 40:0. 5:1:1:3
    6 粉细砂岩 2.5 35.7 2.60 1 1.00 1 2 40:0.53:1:1:3
    7 泥岩 2.5 26.5 2.51 1 1.00 1 1 40:0.46:1:1:3
    8 煤层 7.5 10.4 1.43 1 煤层模拟抽板
    方案三 此方案与方案二相比唯一的区别在于方案三松散层底部赋存黏土层,模型底黏铺设厚度20~60 mm,模型结构见方案二。

    Table3

    模拟试验现象及结果
    方案编号 采动覆岩劣化特征 是否发生突水溃砂 突水溃砂特征
    方案一 采动断裂岩层之间可形成稳定的铰接结构,以拉张裂缝为主,在煤壁上方呈“倒楔形多层交错叠加组合裂缝”向上连通松散含水层,但随着推进裂缝出现闭合 淋水或涌水
    方案二 岩层易沿断裂面发生剪切滑落失稳,不能形成稳定结构,以“拉剪垂向直通裂缝”沟通松散含水层,裂缝开度大,且通畅度好 突水溃砂量大,突涌速率快
    方案三 底黏薄处岩层采动裂缝呈“垂直形拉剪裂缝”;
    底黏厚处采动裂缝呈“倒楔形多层交错叠加组合裂缝”
    底黏薄处发生突水溃砂,底黏厚处未发生 底黏薄处出现突水溃砂,但溃砂逐渐停止;其他区域淋水或涌水,相对于方案二,突水溃砂速率小
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联