• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤矿井下残缺信息的多目标检测方法研究
  • Title

    Research on multi-objective detection method for incomplete information in coal mine underground

  • 作者

    孙林陈圣姚旭龙张艳博陶志刚梁鹏

  • Author

    SUN Lin;CHEN Sheng;YAO Xulong;ZHANG Yanbo;TAO Zhigang;LIANG Peng

  • 单位

    华北理工大学人工智能学院华北理工大学矿业工程学院河北省矿山绿色智能开采技术创新中心中国矿业大学(北京)力学与建筑工程学院深部岩土力学与地下工程国家重点实验室

  • Organization
    College of Artificial Intelligence, North China University of Science and Technology
    College of Mining Engineering, North China University of Science and Technology
    Green Intelligent Mining Technology Innovation Center of Hebei Province
    School of Mechanical and Architectural Engineering, China Universisty of Mining and Technology-Beijing
    State Key Laboratory for Geomechanics and Deep Underground Engineering
  • 摘要

    煤矿井下目标检测技术是建设智慧矿山不可或缺的内容,可以提供实时监测和识别能力,但井下光照不均匀、遮挡严重等因素造成了井下部分目标的信息缺失,极大降低了目标检测的准确率。基于此,提出一种改进YOLOv5s的井下残缺信息的多目标检测算法。考虑到残缺目标易与井下背景相混淆,该算法通过在YOLOv5s的Backbone部分融入 CBAM注意力模块,增强特征图中与残缺目标相关的通道和空间信息,从而增强抑制背景干扰能力。同时,为了有效地提取和强化小目标和被遮挡目标的细节特征,使用加权双向特征金字塔网络BiFPN代替原网络的PANet结构。其次,为了更好地适应井下残缺目标形状的变化,采用引入了额外边界框坐标信息的EIoU函数来优化原有损失函数。最后通过自建井下数据集对改进算法进行验证,实验结果表明:所提出的目标检测算法可以更好地解决井下监控环境中目标尺寸较小、部分区域被遮挡、纹理和形状变化对目标检测精度的影响,改进后模型的平均准确率达到了91.3%,相较于原模型提高了2.7%左右,F1-Score达到了90.0%,相较于原模型提高了1.9%左右。

  • Abstract

    Underground target detection technology in coal mines is an indispensable component of constructing a smart mine, providing real-time monitoring and recognition capabilities. However, factors such as uneven illumination and significant obstruction underground lead to incomplete information for certain targets, greatly reducing the accuracy of target detection. To address this, an improved algorithm for multi-objective real-time detection of incomplete information in coal mine underground is proposed, based on enhancing YOLOv5s. Recognizing that incomplete targets can easily be confused with the underground background, this algorithm incorporates a CBAM (Convolutional Block Attention Module) into the Backbone of YOLOv5s. This inclusion strengthens the channels and spatial information in the feature map relevant to incomplete targets, thus enhancing the suppression of background interference. Furthermore, to effectively extract and enhance detailed features of small and occluded targets, the Weighted Bi-directional Feature Pyramid Network (BiFPN) is employed in place of the original PANet structure. Additionally, to better adapt to the shape variations of incomplete underground targets, an Enhanced Intersection over Union (EIoU) function is introduced, incorporating additional bounding box coordinate information to optimize the existing loss function. Finally, the proposed algorithm is validated using a custom-built underground dataset. Experimental results demonstrate that the improved target detection algorithm effectively addresses challenges posed by small target sizes, partial occlusion, and variations in texture and shape within the underground monitoring environment. The enhanced model achieves an average accuracy of 91.3%, an improvement of approximately 2.7% over the original model, and an F1-Score of 90.0%, an improvement of around 1.9% over the original model.

  • 关键词

    残缺目标检测YOLOv5注意力机制加权双向特征金字塔网络EIoU函数

  • KeyWords

    Detection of Incomplete Targets;YOLOv5;Attention Mechanism;BiFPN;EIoU function

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52074123);河北省自然科学基金资助项目(E2021209148)。
  • DOI
  • 引用格式
    孙 林,陈 圣,姚旭龙,等. 煤矿井下残缺信息的多目标检测方法研究[J]. 煤炭科学技术,2024,52(S2):211−220.
  • Citation
    SUN Lin,CHEN Sheng,YAO Xulong,et al. Research on multi-objective detection method for incomplete information in coal mine underground[J]. Coal Science and Technology,2024,52(S2):211−220.
  • 图表
    •  
    •  
    • 改进YOLOv5网络结构

    图(13) / 表(4)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联