• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于露天矿三维点云的非结构化道路语义分割方法
  • 63
  • 作者

    卢才武薛佳楠李萌鄢盛钰章赛江松何润丰

  • 单位

    西安建筑科技大学资源工程学院西安市智慧工业感知计算与决策重点实验室西安建筑科技大学矿山系统工程研究所西安建筑科技大学管理学院

  • 摘要
    近年来在矿山智能化相关举措的逐步实施下,矿山行业朝着智能化、无人化发展。无人驾驶技术作为当前露天矿智能化运输作业系统的重要组成部分,通过场景重建和识别获得准确的场景几何信息,是无人运输车辆应用于露天矿作业生产的先决条件。三维点云数据可以准确实现三维场景重建,而点云语义分割能够有效提取驾驶场景中道路环境的三维特征信息,实现无人驾驶对行驶环境区域的准确识别。相比城市结构化道路,露天矿场景下非结构化道路具有道路与地形边界特征模糊、无明显道路边沿、空间三维坐标跨度大等特点。为解决目前公开的非结构化道路数据集规模较少、样本分布不均匀以及主流点云语义分割算法对非结构化道路分割精度较低的问题,通过三维点云重建构造露天矿点云数据集,以及优化改进PointNet++算法,提出了一种适用于露天矿场景下非结构化道路的语义分割方法。基于SFM和MVS算法对采集到的多视点图像进行稠密点云重建,同时优化改进PointNet++,引入MLP、通道注意力机制以及基于点注意力的自注意力机制,设计了露天矿非结构化道路点云语义分割模型。为验证该方法有效性,依据S3DIS数据集格式进行转换、划分并数据增强构建了2641组samples露天矿点云数据。通过模型训练的实验结果表明:改进后的算法进行分割测试比PointNet++的mIoU提升了4.9%,且分割性能良好。对比其他点云分割网络,该网络模型更适用于露天矿场景下的非结构化道路,能够满足矿区运输无人车对于可行域的行驶要求,为无人驾驶后续的决策与规划提供准确的三维环境信息。
  • 关键词

    露天矿智能开采非结构化道路三维点云点云语义分割

  • 文章目录
    0引言
    1露天矿三维点云数据集构建
    1.1多视点图像
    1.2露天矿三维点云重建
    2非结构化道路点云分割优化模型
    2.1整体模型框架
    2.2模型模块原理
    2.2.1集合抽象模块(Set Abstraction,SA)
    2.2.2基于混合注意力机制的特征提取模块(Mixed Attention,MA)
    2.2.3特征传递模块(Feature propagation,FP)
    2.2.4多层感知机(Multi-Layer Perceptron,MLP)
    2.3Loss损失函数
    3露天矿非结构化道路点云语义分割实验与结果分析
    3.1露天矿点云数据集
    3.2露天矿地形道路点云分割实验与分析
    3.2.1实验环境配置和评价指标
    3.2.2对比实验与分析
    3.2.3消融实验
    3.2.4仿真验证实验
    4结论
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联