Prediction of drilling pressure in bolting based on gaussian process time series regression optimal kernel function and historical points
LIU Jie
在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义。针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测方法。这种方法通过高斯随机过程、核函数以及贝叶斯理论进行锚杆支护时间序列煤岩压力预测,是一种对非线性问题适应性高、具有概率意义输出的机器学习方法。以巷道掘进过程中钻箱钻进1 000 mm时的钻进压力试验数据作为最优核函数和历史点数的筛选样本,以10种核函数(E、SE、RQ、Matern3/2、Matern5/2、ARDE、ARDSE、ARDRQ、ARDMatern3/2、ARDMatern5/2)和7种历史点数(8、10、12、14、16、18、20)作为筛选对象,通过负对数边缘似然函数为极小化目标函数自适应获取最优超参数,以单步外推的方式和训练集、测试集7∶3的比例对筛选样本进行了70次数值解算。分别以测试集可决系数(
Timely understanding of surrounding rock pressure bolting is crucial to enhance the service life of drilling rigs and ensure coal mine production safety. However, delayed feedback of drilling pressure, nonlinear distribution of coal and rock hardness,and inapplicability of existing methods in bolt support are common problems. To address these issues, a prediction method of drilling pressure in bolt support is proposed based on the optimal kernel function and historical points of Gaussian process time series regression. This is a machine learning method that is highly adaptabile to nonlinear problems and provides probabilistic output. It utilizes Gaussian stochastic process, kernel function, and Bayesian theory to predict the sequence coal rock pressure during bolt support. The optimal kernel function and historical points for the proposed prediction method were selected based on drilling pressure test data obtained during roadway excavation where the drill box was drilled
bolting;prediction of drilling pressure;Gaussian process regression;kernel function;historical points;confidence interval
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会