• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
复合催化剂Ru/CoAl-LDH可见光深度还原低浓度CO2及其性能增强机理
  • Title

    Visible-light deep reduction of low concentration CO2 over composite catalyst Ru/CoAl-LDH and the performance enhancement mechanism

  • 作者

    戴俊贾凤婷杨娟丰之翔王大钊冷冲冲

  • Author

    DAI Jun;JIA Fengting;YANG Juan;FENG Zhixiang;WANG Dazhao;LENG Chongchong

  • 单位

    河南理工大学 安全科学与工程学院煤炭安全生产与清洁高效利用省部共建协同创新中心

  • Organization
    School of Safety Science and Engineering, Henan Polytechnic University
    State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization
  • 摘要

    “双碳”目标下,利用清洁可再生的太阳能驱动CO2资源化利用成为重要的研究课题,但已有报道多以高纯CO2为研究对象,而实际燃煤电厂排放的烟气中CO2体积分数仅为3%~15%,为规避高能耗的CO2提浓过程,直接实现低浓度CO2光催化定向转化对节能减排及其资源化利用具有重要科学意义。采用共沉淀−水热法首先制得钴铝层状双氢氧化物(CoAl-LDH),通过表面浸渍耦合氢气热处理将钌纳米颗粒负载至CoAl-LDH表面,构筑出可见光催化剂Ru/CoAl-LDH,其独特的表面组成与结构特性有助于实现以水为氢源的低浓度CO2深度光还原。利用X射线衍射、透射电镜、X射线光电子能谱与紫外可见漫反射光谱等测试技术对复合催化剂的结构组成和微观形貌进行测定分析,结果表明:负载的钌物种为零价金属态Ru,其负载未改变 CoAl-LDH的纳米片状形貌,但可显著提升复合催化剂的光响应性能。以Ru/CoAl-LDH为光催化剂、水为电子给体和氢源、10% CO2/N2混合气体为模拟烟道气,在可见光照射下考察Ru负载量对还原产物生成量及深度还原产物甲烷选择性的影响,其中1.6% Ru/CoAl-LDH具有最优的CO2光还原性能,可见光照射3 h后的甲烷产生量及选择性高达452.4 μmol/g和86.3%,分别是单一CoAl-LDH的10.4倍和3.3倍。同时,借助CO2吸附等温线、原位XPS、瞬态光电流与阻抗谱等测试结果探究了Ru/CoAl-LDH对低浓度CO2深度光还原的性能增强机理。CoAl-LDH表面的—OH基团利于复合催化剂对低浓度CO2的选择性吸附;CoAl-LDH优异的水氧化性能可为CO2深度光还原提供充足的原位氢源,无需使用具有爆炸危险性的氢气;负载的Ru作为光电子受体,在增强光生电荷分离与迁移效率的同时,作为CO2还原活性位能实现其多电子还原过程。因此,CoAl-LDH和助催化剂Ru的协同作用是低浓度CO2深度光还原性能得以提升的主要原因,复合催化剂Ru/CoAl-LDH实现了可见光水氧化与低浓度CO2深度还原的有效耦合,为本质安全且低能耗CO2转化体系的构建提供了重要理论指导,也为燃煤烟气CO2资源化利用提供了新思路。

  • Abstract

    Under the dual-carbon goal, the resource utilization of CO2 driven by clean and renewable solar energy has become an important research topic. However, the previous reports have mostly used high-purity CO2 as the research object, while the CO2 concentration in the flue gas emitted by coal-fired power plants is only 3%~15%. To avoid the high-energy CO2 enrichment process, photocatalytic directional conversion of low concentration CO2 into high-valued fuels or chemicals has important scientific significance for energy saving, emission reduction and its resource utilization. Cobalt-aluminum layered double hydroxide (CoAl-LDH) was firstly prepared by coprecipitation-hydrothermal method and visible-light catalysts Ru/CoAl-LDH were constructed by loading ruthenium nanoparticles onto the surface of CoAl-LDH via surface impregnation coupled with hydrogen heat treatment. The unique surface composition and structural characteristics of Ru/CoAl-LDH composites are conductive to implement deep photoreduction of low concentration CO2 using H2O as the hydrogen source. Structural composition and micro-morphology of the composite catalysts Ru/CoAl-LDH were determined by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and ultraviolet-visible diffuse reflection spectroscopy. The results indicate that the loaded Ru species is zero valence state of metal Ru. Loading Ru has no effect on the nano-lamellar morphology of CoAl-LDH, but can significantly improve the photoresponse performance of composite catalysts. By using Ru/CoAl-LDH as photocatalysts, H2O as electron donor and hydrogen source, and 10% CO2/N2 mixture as simulated flue gas, the effect of Ru loading amount on the productivity of CO2 reduction products and the selectivity of deep reduction products were investigated under visible light irradiation. 1.6% Ru/CoAl-LDH exhibited the optimal CO2 photoreduction performance. After 3h of visible light irradiation, the productivity and selectivity of deep reduction product methane reached 452.4 μmol/g and 86.3%, which were 10.4 and 3.3 times of single CoAl-LDH, respectively. Meanwhile, the performance enhancement mechanism on deep photoreduction of low concentration CO2 was explored by using CO2 adsorption isotherms, in-situ XPS, transient photocurrent and impedance spectroscopy. The –OH groups on the surface of CoAl-LDH facilitate selective adsorption of composite catalysts for low concentration CO2. Excellent H2O oxidation performance of CoAl-LDH can provide sufficient in-situ hydrogen source for deep photoreduction of CO2, without the use of H2 having explosive risk. As the photoelectron acceptor, the loaded Ru can not only enhance the separation and migration efficiency of photogenerated charges, but also implement multi-electron reduction as active reductive sites of CO2. Therefore, the synergistic effect of CoAl-LDH and cocatalyst Ru is the primary reason for the improvement of low concentration CO2 deep photoreduction performance. The composite catalysts Ru/CoAl-LDH realize the effective coupling of visible-light water oxidation and low concentration CO2 deep reduction, providing important theoretical guidance for the construction of essentially safe and low-energy consumptive CO2 conversion system. It also provides a new idea for the resource utilization of CO2 from coal flue gas.

  • 关键词

    低浓度CO2深度光还原钴铝层状双氢氧化物钌负载水氧化

  • KeyWords

    low concentration CO2;deep photoreduction;CoAl-LDH;Ru loading;water oxidation

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52074103,U2004194);河南省高校重点科研项目计划基础研究专项资助项目(25ZX010)
  • DOI
  • 引用格式
    戴俊,贾凤婷,杨娟,等. 复合催化剂Ru/CoAl-LDH可见光深度还原低浓度CO2及其性能增强机理[J]. 煤炭学报,2025,50(2):1325−1338.
  • Citation
    DAI Jun,JIA Fengting,YANG Juan,et al. Visible-light deep reduction of low concentration CO2 over composite catalyst Ru/CoAl-LDH and the performance enhancement mechanism[J]. Journal of China Coal Society,2025,50(2):1325−1338.
  • 图表

    图(0) / 表(1)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联