Effect of pyrolysis temperature on dynamic combustion mechanism evolution of semi-coke from low-rank coal pyrolysis
何江永张洁邹冲杨永林郑娥闫龙
HE Jiangyong;ZHANG Jie;ZOU Chong;YANG Yonglin;ZHENG E;YAN Long
榆林学院化学与化工学院西安建筑科技大学冶金工程学院
采用热分析仪并借助等转化率的FWO法和KAS法,研究了热解温度分别为450℃,550℃,600℃,650℃,750℃时制备的半焦的燃烧特性和动力学参数,并进一步利用Malek方法对不同转化阶段活化能对应的机理函数进行了探究。结果表明:随着热解温度的升高,半焦的燃烧性能变差,燃烧所需活化能升高,在转化率(α)大于0.5时,活化能与转化率的二阶导数趋于稳定。不同转化阶段的燃烧动力学机理存在差异,转化率(α)小于0.5时,不同半焦的燃烧动力学机理均以化学反应(G(α)=(1-a)-1-1)为主,随着转化率的提高,燃烧动力学机理由随机成核和随后生长的标准机理模型(G(α)=[-ln(1-a)]23)转变为以扩散为主要限制性环节的动力学机理模型;随着热解温度的升高,半焦燃烧过程中更容易在较低转化率时转化为以扩散为主要的限制性环节。
The combustion characteristics and kinetic parameters of semi-cokes prepared at different pyrolysis temperatures were studied by a thermal analyzer via Flynn-Wall-Ozawa (FWO) and Kissinger-Akah-Sunose (KAS) methods. Furthermore, the Malek method was used to explore the mechanism functions corresponding to activation energy at different conversion stages. The results indicate that increasing pyrolysis temperature deteriorates the combustion performance of semi-coke and increases the energy consumption. When conversion α>0. 5, the second derivative of activation energy and conversion tends to stabilize. There are differences in combustion dynamic mechanisms at different conversion stages. When α <0. 5, the combustion dynamic mechanism of semi-cokes is mainly chemical reactions ( G ( α )= 1 - a - 1 ). As the conversion increases, the combustion dynamic mechanism changes from a standard mechanism model of random nucleation and nuclei growth ( G ( α )= - ln (1 - α ) ) to a dynamic mechanism model with diffusion as the main restric‐ tive step. In addition, with the increase of pyrolysis temperature, semi-coke is more likely to be trans‐ formed into a restrictive step dominated by diffusion at lower conversions.
半焦燃烧性能活化能Malek方法动力学机理
semi-coke;combustion performance;activation energy;Malek method;dynamic mechanism
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会