• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于Curvelet变换和压缩感知的煤岩识别方法
  • Title

    Recognition method of coal-rock images based on curvelet transform and compressed sensing

  • 作者

    伍云霞张宏

  • Author

    WU Yun-xia,ZHANG Hong

  • 单位

    中国矿业大学(北京)机电与信息工程学院

  • Organization
    School of Mechanical Electronic & Information Engineering,China University of Mining & Technology(Beijing),Beijing  100083,China
  • 摘要
    针对小波难以表达煤岩图像的边缘曲线特征,影响识别精度的问题,提出一种基于曲波变换的方法,对煤岩图像边缘进行稀疏表示。该方法通过曲波变换对煤岩图像进行曲波分解,得到各尺度层曲波系数,保留图像变换后的Coarse层低频系数,基于压缩感知理论,利用随机高斯矩阵对高频系数进行测量,实现高维系数降维,Coarse层低频系数与降维后的高频系数通过级联构成煤岩图像特征向量,最后结合支持向量机对煤岩图像进行分类识别。实验表明:通过曲波分解提取的特征能够有效地表达煤岩图像边缘的曲线特征,所提出方法煤岩的分类准确率达93.75%,比Haar小波方法提高了4.37%,所用降维方法比线性降维方法提取的特征向量更加有利于煤岩图像的分类识别。
  • Abstract
    As wavelet cannot well express the edge curve characteristics of coal-rock images,leading to a low recogni- tion accuracy,a method based on curvelet transform was proposed to have a sparse representation of coal-rock image edges. The method used the curvelet transform to decompose images into curvelet coefficients in different scales. The low-pass coarse coefficients were preserved and then Gaussian random matrices were used to measure the high-pass co- efficients in order to realize a dimensionality reduction based on the compressed sensing theory. The feature vectors for coal-rock images were created by concatenating the low-pass coarse coefficients and high-pass coefficients after dimen- sionality reduction. Finally,classification and identification were carried by support vector machine. Experimental re- sults showed that the features extracted by curvelet decomposition could effectively express the curve features of coal- rock image edges. The classification accuracy of the proposed method reached 93. 75% . And it improved the classifica- tion accuracy of 4. 37% than Haar wavelet method. The feature vectors extracted by the proposed dimensionality re- duction method were more advantageous to the classification and recognition of coal and rock images than the linear di- mensionality reduction methods.
  • 关键词

    曲波变换煤岩识别特征提取压缩感知支持向量机

  • KeyWords

    curvelet transform;coal-rock recognition;feature extraction;compressed sensing;support vector machine

  • 基金项目(Foundation)
    国家重点研发计划资助项目(2016YFC0801800);国家自然科学基金重点资助项目(51134024);
  • DOI
  • Citation
    Wu Yunxia,Zhang Hong. Recognition method of coal-rock images based on curvelet transform and compressed sensing[J]. Journal of Chi- na Coal Society,2017,42(5):1331-1338.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联