摘要
遥感影像的监督分类算法在环境监测、地质调查等领域均有重要应用。本文利用最大似然(ML)分类器和支持向量机(SVM)分类器对土地利用和地表覆盖问题中地物类型的提取和识别进行研究,系统分析两种不同分类方法对地物分类结果的影响。通过选取Landsat LT5和LE7卫星遥感影像数据及定义训练样本,对比分析利用ML和SVM分类器的分类成果精度,其中Landsat LT5和ML、SVM组合的分类精度分别达94.64%和94.98%,而Landsat LE7和ML、SVM组合的分类精度则分别达97.63%和99.29%。研究表明,对于LT5影像,ML和SVM两种分类器的精度相当,而对于LE7影像,SVM分类器的精度明显高于ML分类器。