• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于小波包熵和流形学习的垮落煤岩识别
  • 作者

    李一鸣符世琛周俊莹宗凯李瑞吴淼

  • 单位

    中国矿业大学(北京)机电与信息工程学院

  • 摘要
    针对垮落煤岩识别的技术问题,基于垮落煤岩冲击液压支架后尾梁的振动信号,提出了一种基于小波包熵和流形学习的特征提取方法。该方法首先对振动信号进行小波包分解并单支重构,计算该信号的小波包能量熵,从而确定信号能量分布的复杂度,计算各频带的样本熵,从而确定各频带小波包系数的复杂度。以小波包能量熵和频带样本熵构造特征向量,输入BP神经网络识别垮落煤岩。然后利用局部线性嵌入(LLE)挖掘特征向量的低维流形结构,并输入神经网络对比其识别效果。并提出了未知样本低维估计方法以得到其低维嵌入。结果表明:基于小波包熵和LLE提取的特征向量准确又简单,输入神经网络识别率达到92.5%;基于低维估计方法得到的未知样本低维嵌入也较准确。
  • 关键词

    垮落煤岩识别小波包能量熵样本熵流形学习BP神经网络

  • 相关文章
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联