摘要
传统的相似度计算方法通过评分信息得出用户之间的相关关系,这些方法仅仅从用户评价信息考虑用户之间的相似度,使计算结果过于片面,在稀疏数据集中受较大影响,导致推荐结果的准确性有所降低。针对一般的协同过滤推荐算法中存在的数据稀疏性问题,通过引入用户相似度权重系数,将Pearson相关系数进行加权处理后与Jaccard相似性方法相结合,提出一种新的计算方案,改进算法考虑了用户对共同评分项目所占的比率和用户对项目的评分取值大小,优化了协同过滤算法中相似度量的关键性能。在MovieLens和Book-Crossing两个公共数据集中进行试验,结果表明,改进算法使平均绝对误差值最大程度上降低了5. 2%,从而有效降低稀疏数据集对推荐结果的影响,显著提升了推荐系统的准确度。