摘要
针对单一神经网络学习器易出现过拟合现象、网络泛化能力差等问题,提出一种基于遗传算法的神经网络集成方法.该方法通过对数据的预处理,将遗传算法作为集成学习的结合策略,在保证个体学习器分类准确率的同时,充分吸收个体学习器的多样性,利用遗传操作与物种入侵的方式对神经网络集成学习器进行迭代进化,得到具有全局最优的神经网络集成学习器.研究结果表明:使用该神经网络个体学习器集成方法训练出来的集成学习器具有良好的全局性,能够有效的避免网络出现的过拟合现象,提高网络的分类准确率,是一种稳定、泛化能力较强的神经网络集成学习器.