• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
矿井通风阻变型故障复合特征无监督机器学习模型
  • Title

    Unsupervised machine learning model for resistance variant fault diagnosis of mine ventilation system with composite features

  • 作者

    刘剑尹昌胜黄德刘丽邓立军

  • Author

    LIU Jian ,YIN Changsheng ,HUANG De ,LIU Li ,DENG Lijun

  • 单位

    辽宁工程技术大学 安全科学与工程学院辽宁工程技术大学 矿山热动力灾害与防治教育部重点实验室

  • Organization
    College of Safety Science & Engineering,Liaoning Technical University,Key Laboratory of Mine Thermodynamical Disaster and Prevention,Ministry of Education,Liaoning Technical University
  • 摘要

    目前矿井通风系统阻变型故障诊断方法需要收集故障样本方可进行故障位置和故障量诊断,且故障位置诊断和故障量诊断需要分别建立对应分类和回归数学模型。针对矿井通风系统阻变型故障样本收集难度大和故障位置及故障量无法同时进行故障诊断的问题,将矿井通风系统阻变型故障诊断转换为最小欧氏距离的优化求解问题,提出一种无需样本参与训练的矿井通风系统阻变型故障诊断无监督学习模型,利用协方差矩阵自适应进化策略方法对无监督学习模型进行优化求解,实现分类与回归预测一体化。通过进行风量、风压单一特征和风量-风压复合特征的对比模拟试验,结果表明:所提出的故障诊断无监督学习模型和所使用的求解方法可有效地解决矿井通风系统阻变型无样本参与的故障诊断问题;故障诊断过程中无需单独分别进行故障位置和故障量诊断;风量-风压复合特征比风量或风压单一特征下的矿井通风系统阻变型故障诊断可达到更高的故障位置诊断准确率和更低误差的故障量诊断性能;即使选用部分观测点,也可实现较高的故障位置诊断准确率和较低故障量诊断误差的性能,且故障观测点比例大小与诊断性能无直接影响关系。

  • Abstract

    The present resistance variant fault diagnosis method for mine ventilation system needs to collect fault samples before the fault location and fault volume diagnosis. Furthermore,the mathematical model for classification and regression should be built for the location and volume of the fault diagnosis separately. In terms of the issues of the resistance variant fault diagnosis method,such as,difficulties in collecting the fault samples,and diagnosing the fault location and volume at the same time,the resistance variant fault diagnosis of mine ventilation system was transformed into an optimal problem of minimum Euclidean distance,thus an unsupervised learning model for resistance variant fault diagnosis of mine ventilation system without the training sample was proposed,and the Covariance Matrix Adaptation Evolution Strategy method was used to optimize the unsupervised learning model to realize the integration of classification and regression prediction. A comparable simulation test of air volume,wind pressure single feature and air volume-wind pressure composite characteristics was conducted and the results show that the proposed fault diagnosis model and the solution method can effectively solve the fault diagnosis problem of mine ventilation system resistive type without sample participation. In the process of fault diagnosis,it is not necessary to diagnose fault location and the fault magnitude separately. Compared with the resistance variant fault diagnosis of mine ventilation system under the single feature of air volume or wind pressure,the composite features of air volume-wind pressure can achieve a higher accuracy of fault location diagnosis and a lower error of fault volume diagnosis. Even if some observation points are selected,the model can achieve a higher fault location diagnostic accuracy and a lower fault diagnostic error,and the proportion of fault observation points has no direct influence on the diagnostic effect.

  • 关键词

    矿井通风阻变型故障无监督学习进化策略等效风阻

  • KeyWords

    mine ventilation;resistance variant fault;unsupervised learning;CMA-ES;equivalent wind resistance

  • 基金项目(Foundation)
    国家自然科学基金资助项目(51574142);国家重点研发计划资助项目(2017YFC0804401)
  • DOI
  • 引用格式
    刘剑,尹昌胜,黄德,等. 矿井通风阻变型故障复合特征无监督机器学习模型[J]. 煤炭学报,2020,45(9):3157-3165.
  • Citation
    LIU Jian,YIN Changsheng,HUANG De,et al. Unsupervised machine learning model for resistance variant fault diagnosis of mine ventilation system with composite features[J]. Journal of China Coal Society,2020,45(9):3157-3165.
  • 相关文章
  • 图表
    •  
    •  
    • 试验矿井通风系统流体网络

    图(5) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联