谭章禄陈孝慈
中国矿业大学(北京) 管理学院
为了解决当前煤矿监控中存在的人工干预多、监测效率低等问题,建立基于RetinaNet的单阶段煤矿目标检测器,通过实验确定检测关键参数并验证检测效果。实验结果表明:RetinaNet目标检测器能够自动检测及提取人员等关键对象,整体性能可以满足煤矿监控的需求;RetinaNet目标检测器能够在较差的环境条件下实现对目标对象的准确检测,对于人员的辨识已经达到较为理想的水平;基于现有数据构建的图像识别模型,尚不能较好地识别各类煤矿机械设备。RetinaNet目标检测器相关功能的实现,有赖于建立专业图像数据集,并准确地训练模型进而发掘数据的深度价值。
矿井监控RetinaNet目标检测器对象检测识别模型专业数据集
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会